Introduction

A Zeta converter performs a non-inverting buck-boost function similar to that of a SEPIC, which is an acronym for Single-Ended Primary Inductance Converter. The Zeta topology is also similar to the SEPIC, in that it uses two inductors, two switches and a capacitor to isolate the output from the input (see figures 1 and 2). However, Zeta conversion requires a P-Channel MOSFET as the primary switch, while SEPIC conversion uses an N-Channel MOSFET. This architecture makes Sipex’s SP6125/6/7 controllers suitable for use in a Zeta topology.

Figure 1- Zeta converter

Figure 2- SEPIC converter
Zeta Converter Waveforms

When analyzing Zeta waveforms it is helpful to keep in mind that at equilibrium, L1 average current equals I_{IN} and L2 average current equals I_{OUT}, since there is no DC current through the flying cap C_{FLY}. Also there is no DC voltage across either inductor. Therefore, C_{FLY} sees ground potential at its left side and V_{OUT} at its right side, resulting in DC voltage across C_{FLY} being equal to V_{OUT}.

When $M1$ is on, L1 and L2 are energized. D1 sees a potential of $V_{IN}+V_{OUT}$ across it (see figures 3, 4, and 5). When $M1$ is off, energy stored in L1 and L2 is released. D1 is forward biased.

![Figure 3- Zeta simplified circuit diagram during MOSFET on time](image)

![Figure 4- Zeta simplified circuit diagram during MOSFET off time](image)
Figure 5- Zeta idealized waveforms
Voltage Conversion Ratio

Output voltage is given by the following equation:

\[Vo = Vin \times \frac{D}{1-D} \]

Where D is duty cycle. \(V_{OUT} \) is plotted as a function of D in figure 6. As can be seen, for D less than 0.5 the converter performs buck function and for D larger than 0.5 it is a boost topology.

![Figure 6- Output voltage versus duty cycle for \(V_{IN}=1V \)](image-url)
COMPONENT SELECTION

L1 Selection
Select L1 for inductance L, saturation current ISAT and DC rating IDC.

Calculate inductance from:

\[L1 = \frac{V_{in,\max} \times V_o}{I_{ripple} \times f \times (V_{in,\max} + V_o)} \] \hspace{1cm} (1)

Where:
- \(I_{ripple} \) is the permissible peak-to-peak ripple current (nominally 50% of IOUT)
- \(f \) is switching frequency
- \(V_{in,\max} \) is maximum input voltage

Calculate DC rating of L1 from:

\[IDC = \frac{I_o \times V_o}{V_{in,\min} \times \text{Eff}} \] \hspace{1cm} (2)

Where:
- \(V_{in,\min} \) is the minimum input voltage
- \(\text{Eff} \) is converter efficiency (nominally 85%)

Calculate saturation current from:

\[Isat \geq 1.15 \times IDC \] \hspace{1cm} (3)

Where \(IDC \) is DC rating of L1 calculated above.

L2 Selection
Let L2 equal L1 thereby ensuring both inductors will have same ripple current. This is true since during ON time \(L = V_{in} \times \left(\frac{T_{on}}{\Delta i} \right) \) for both inductors as seen in figure 3.

Selecting L2=L1 also makes it possible to wind both inductors on the same core if it is so desired. IDC should be at least equal to IOUT. Calculate saturation current as shown for L1.

CFLY Selection
Select CFLY for capacitance, voltage rating VDC and ripple current rating IRIpple.

Calculate CFLY from:

\[Cfly = \frac{I_o \times V_o}{(V_{in} + V_o) \times f \times V_{ripple}} \] \hspace{1cm} (4)
Where:
VIN is minimum input voltage
VRIPPLE is voltage ripple across CFLY (nominal 1% of VOUT)

DC Voltage rating should be greater than VOUT and ripple current should be greater than IOUT.

MOSFET Selection
Select MOSFET for voltage rating BVDSS, ON resistance RDS(ON), gate-to-drain charge QGD and thermal resistance RTH. BVDSS should be greater than VIN+VOUT, allowing a guard band against switching transients. The MOSFET should be able to handle the combined peak inductor current of both inductors. For an in-depth procedure see the section titled “MOSFET Selection” in any Sipex controller datasheet.

Diode Selection
Select diode for voltage rating VR and current rating IF. VR should be greater than VIN+VOUT and IF should be capable of conducting IIN+IOUT.

Cin Selection
Select the input capacitor CIN for Voltage rating, ripple current and Capacitance. A simplified expression for ripple current can be obtained by assuming D=0.5 and Efficiency =100%. Then IIN = IOUT and IRMS can be estimated from:

\[
I_{cin} = 0.5 \times I_o
\]

In general, input voltage ripple should be kept below 1.5% of VIN (not to exceed 0.18V). By using the same assumptions that were applied for simplifying ripple current calculation, required input capacitance can be estimated from:

\[
C_{in} = I_o \times \frac{1}{2 \times f \times 0.18V} \text{ } (5)
\]

Note that in the C\text{IN} equation the effect of ESR and ESL has been assumed to be negligible. This assumption is valid for ceramic capacitors and high quality Tantalum and Aluminum electrolytic capacitors.

COUT Selection
Select the output capacitor for capacitance, voltage rating and Equivalent Series Resistance (ESR). To simplify analysis, assume that a ceramic capacitor is used with ESR = 5mOhm. Then VOUT ripple due to ESR is negligible. To calculate COUT, let inductor current ripple equal 30% of output current and use the following equation:

\[
C_o = \frac{I_{rip}}{8 \times V_{rip} \times f} \text{ } \text{
Where:

- I_{RIP} is inductor ripple current (nominally 30% of I_{OUT})
- V_{RIP} is output voltage permissible ripple (nominally 1% of V_{OUT})

Design Example

Design a Zeta converter to operate over input range of 10V-18V with output voltage of 12V and output current of 0.7A.

1- **Controller selection**

 Use Sipex SP6126 operating at 600kHz and capable of driving a P-channel MOSFET.

2- **Inductor L1**

 From equations (1) and (2), L1 and its corresponding DC current rating are calculated at 34uH and 1A respectively. From (3), saturation current should be larger than 1.15A. An inductor that meets the above specifications is Wurth Electronik dual inductor #744877100, 10uH, $I_{DC}=1.1$A and $I_{SAT}=2.8$A. Note that due to mutual inductance of the double inductor the effective inductance for calculating ripple current is 20uH. Even though this is less than the value calculated from (1), it is sufficient to ensure Continuous Conduction Mode of operation over the full input range.

3- **Inductor L2**

 L2 is selected to be equal to L1 and thus a double inductor can be used.

4- **Capacitor C_{FLY}**

 Using (4) C_{FLY} is calculated to be 3.9uF. In order to make the design more conservative a 22uF ceramic capacitor is selected.

5- **MOSFET M1**

 One choice that meets this application’s requirements is Vishay/Siliconix Si2319DS, $B_{VSS}=40$V, $R_{DS(ON)}=0.13\Omega$.

6- **Diode D1**

 ON semiconductor MBRA340T3, 40V, 3A meets requirements.

7- **Capacitor C_{IN}**

 Using (5) C_{IN} is calculated to be 3.2uF. A 4.7uF ceramic capacitor meets this requirement.

8- **Capacitor C_{OUT}**

 Using (6) C_{OUT} is calculated 0.36uF. However to allow for load transients a 22uF ceramic capacitor is selected.

The Zeta converter shown in figure 7 was thus built and tests showed satisfactory operation over voltage input range of 10V to 18V. Efficiency plots are shown in figure 8.
Although Sipex’s SP6125/6/7 are primarily used as buck controllers, by adding few inexpensive components they can be used as the heart of a Zeta non-inverting buck-boost converter that can provide output current up to 1A. The simple procedure outlined above can be followed to select the necessary components for a simple and inexpensive ZETA converter.