

Two-Step LED Current Controller

Description

The XR46051 is a two-step LED current controller for bulb application powered by an alternative current (AC) voltage source directly. It can drive an external N-channel power MOSFET to regulate the current flowing through a High Voltage (HV) LED string.

The XR46051 works as a constant current regulator to control two-step current levels for AC step driver with simplest structure. It also provides linear type Over Temperature Protection (OTP).

The PCB design can be very compact to meet various shape requirements. It is especially suitable for replacing A-series LED light bulbs and candelabra LED bulbs.

Typical Application

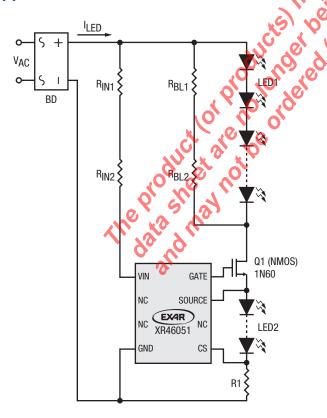


Figure 1. Typical Application

FEATURES

- Device
 - □ 6V to 76V chip supply voltage range
 - Over temperature protection
 - □ Single board LED lighting solution available
 - □ 3mm x 3mm TDFN-8 package
- System
 - All solid state components
 - No electrolytic capacitor required
 - Fewer component counts and simple solution for LED lighting
 - Scalable architecture allows optimization of performance vs. cost
 - Driver-on-board and chip-on-board design solution available which minimize process flow and assembly cost
 - High PF and Low THD performance
 - □ Flexible PCB layout options

APPLICATIONS

- LED Lighting Applications
 - Downlight
- □ High bay
- □ Specialty
- Architectural

REV1A 1/7

2/7

Absolute Maximum Ratings

Stresses beyond the limits listed below may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Sustaining Voltage

VIN, GATE, SOURCE to GND	0.3V to 85V
SOURCE to CS	0.3V to 70V
GATE to SOURCE	0.3V to 7V
CS to GND	0.3V to 1V
VIN input current	3mA
SOURCE to CS current	200mA
Maximum operating junction temperature, T	TJ 150°C
Operating temperature, T _{OPR}	40°C to 85°C
Storage temperature range	-55°C to 150°C
Lead temperature (soldering, 10 seconds)	260°C

Operating Conditions

V _{IN} input voltage6	V ~ 76V
Peak level current	180 mA

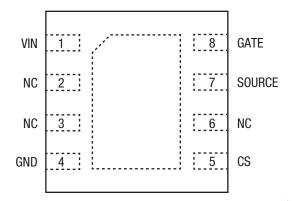
- NOTES:

 1. All voltages are with respect to ground. Currents are positive into, negative out of the specified terminal.

 2. All parameters having min/max specifications are guaranteed. Typical values are for reference purpose only.

 3. Unless otherwise noted, all tests are pulsed tests at the specified temperature, therefore: T_= T_C = T_A

 Electrical Characteristics


Symbol	Parameter	Conditions	Min	Тур	Max	Units
VIN _{MIN}	Minimum VIN supply voltage	.00	6			V
I _{IN}	VIN supply current	V _{IN} = 6V to 73V		0.3	0.5	mA
VIN _{CLAMP}	VIN over voltage clamp	When V _{IN} > V _{INCLAMP} , I _{IN} will increase to >1mA to clamp V _{IN} at VINCLAMP	74	76	80	V
V _{CS}	CS voltage	V _{IN} = 15V and 75V	310	323	336	mV
V _{REF1} / V _{REF0}	Reference voltage ratio		85	90	95	%
V _{GATE}	GATE voltage	Gate to SOURCE		5.4		V
I _{SOURCE}	GATE source current ⁽¹⁾	V _{GATE} - V _{CS} = 3V		30		μΑ
I _{SINK}	GATE sink current ⁽¹⁾	V _{GATE} - V _{CS} = 3V		500		μΑ
T _{TP}	Thermal protection trip temperature	When T _J is higher than T _{TP} , V _{CS} decreases linearly	135	145		°C
$\Delta V_{CS}/\Delta T_{J}$	Thermal protection mode V _{CS} decreasing slope ⁽¹⁾	$T_{J} > T_{TP}$		-1.1		%/°C

REV1A

^{4.} Guarantee by design, not by production test.

Pin Configuration

3mm x 3mm TDFN-8, Top View

Pin Functions

Pin Number	Pin Name	Description
1	VIN	Power supply pin.
2	NC	No Connection.
3	NC	No Connection.
4	GND	Ground pin.
5	CS	Current sense pin. Connect a sense resistor, R_{CS} , between this pin and the GND pin. The peak current is set by $I_{OUT} = V_{CS}/R_{CS}$.
6	NC	No Connection.
7	SOURCE	External HV NMOS source pin. The V _F of the LED segment connected between the SOURCE pin and the CS pin should not be higher than 70V.
8	GATE	External HV NMOS gate driving pin. Limited to 5.5V maximum.
Exposed ther	rmal pad (EP)	Exposed thermal pad of the chip. Use this pad to enhance the power dissipation capability. The thermal conductivity will be improved if a copper foil on PCB is soldered with the thermal pad. It is recommended to connect the exposed thermal pad to the GND pin.

Functional Block Diagram

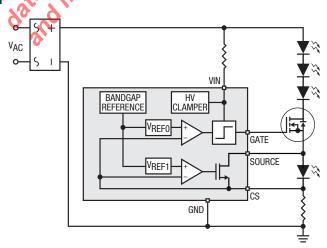


Figure 2. Functional Block Diagram

Applications Information

Typical Application

For a typical two-step driving scheme with one XR46051, the electrical performance is good enough to meet most of the requirement: the Power Factor (PF) is higher than 0.92 and the Total Harmonic Distortion (THD) is around 30%. If higher PF or lower THD is required, one more XR46083 or XR46084 can be added to make the lighting system becoming a threestep driving scheme, as shown in below. The three-step system can provide better electrical performance of PF > 0.96 and THD = $\sim 20\%$.

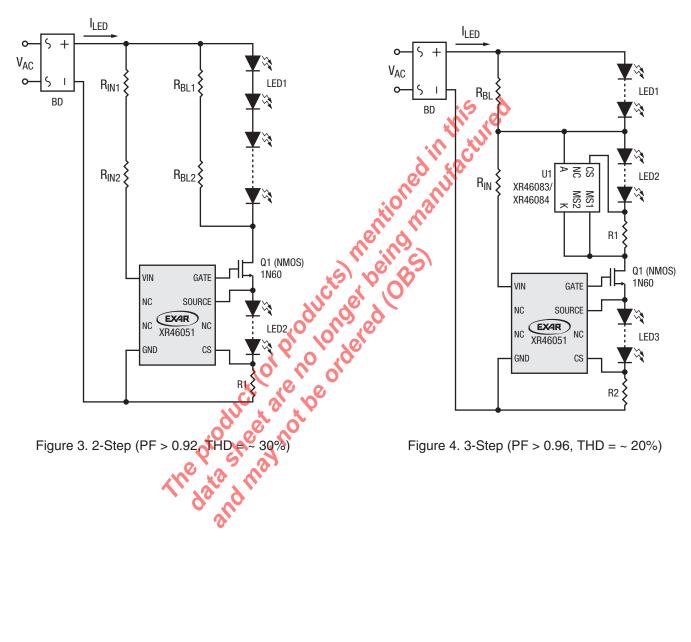


Figure 4. 3-Step (PF > 0.96, THD = $\sim 20\%$)

Applications Information (Continued)

Linear Type Thermal Protection

When the junction temperature T_J rises up to the Thermal Protection Trip temperature T_{TP} (145°C in typical), the current sense voltage V_{CS} starts to decrease linearly at a slope of -1.1%/°C. The LED driving current decreases accordingly. The system can still work normally under the thermal protection mode with lower driving current. The power dissipation on the XR46051 chip becomes lower so the T_J will stop increasing when thermal balance is reached.

Layout Suggestion

The exposed thermal pad under the chip is used to enhance the power dissipation capability. The thermal conductivity will be improved if a copper foil on PCB soldered with the thermal pad can be as large as possible. It is strongly recommended to connect the GND pin to the exposed thermal pad.

The external HV NMOS is recommended to be placed close to the chip. The pull-high resistor for the V_{IN} pin should be placed close to the chip too. The current sense resistor connected between the CS pin and GND pin should be placed as close as to the CS pin and GND pin, as the

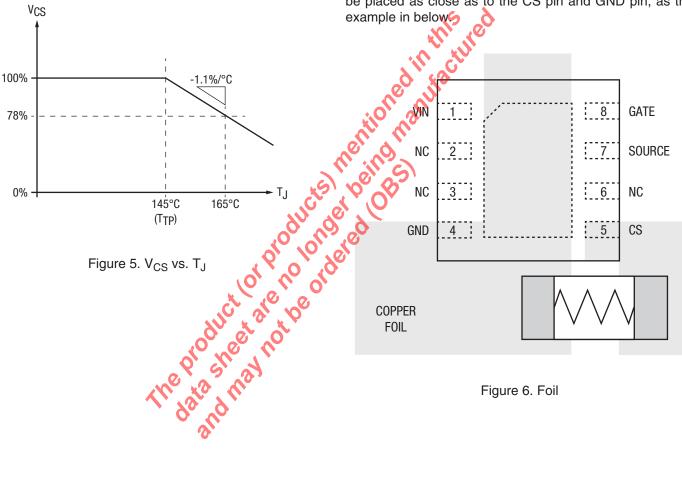
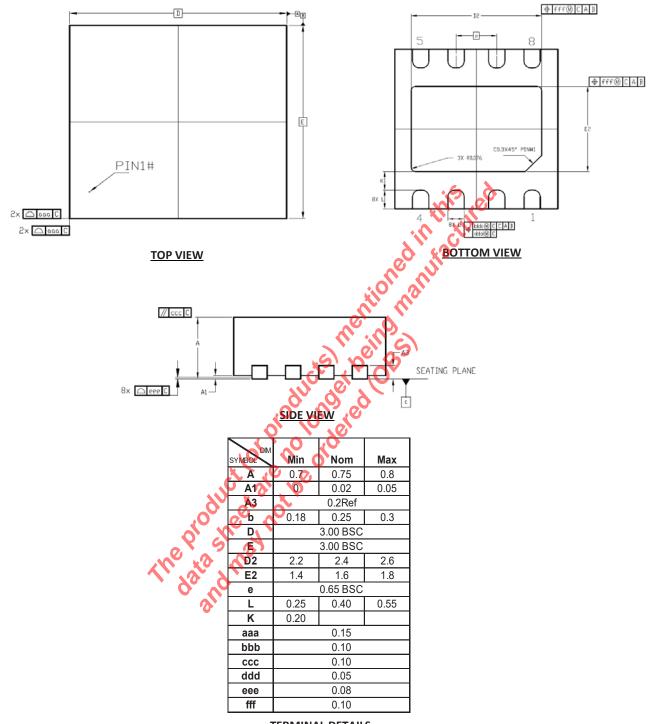



Figure 6. Foil

Package Description

TERMINAL DETAILS

Drawing No. : POD - 00000088

Revision: C.1

- 1. All dimensioins are in Millimeters
- 2. Dimensions and tolerance per Jedec MO-220

Ordering Information⁽¹⁾

Part Number	Operating Temperature Range	Lead-Free	Package	Packaging Method
XR46051IHBTR	-40°C to 85°C	Yes ⁽²⁾	TDFN8 3x3	Tape and reel

NOTE:

- 1. Refer to www.exar.com/XR46051 for most up-to-date Ordering Information.
- 2. Visit www.exar.com for additional information on Environmental Rating.

Revision History

Revision	Date	Description
1.0	Aug 2015	Initial release.
1A	Nov 2016	Update datasheet format, typical application and package description.
	the product	Initial release. Update datasheet format, typical application and package description. EXAR www.exar.com

EXAR www.exar.com Tel.: +1 (510) 668-7000

48720 Kato Road Fremont, CA 94538 USA

Fax: +1 (510) 668-7001 Email: LEDtechsupport@exar.com

Exar Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. Exar Corporation conveys no license under any patent or other right and makes no representation that the circuits are free of patent infringement. While the information in this publication has been carefully checked, no responsibility, however, is assumed for inaccuracies.

Exar Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Exar Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of Exar Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of Exar Corporation is prohibited. Exar, XR and the XR logo are registered trademarks of Exar Corporation. All other trademarks are the property of their respective owners.

©2016 Exar Corporation