

3A Low Dropout Voltage Regulator

Rev. 2.0.1

GENERAL DESCRIPTION

The SPX1587 is a low power positive-voltage regulator designed to satisfy moderate power requirements with a cost effective, small footprint solution.

This device is an excellent choice for use in battery-powered applications and portable computers. The SPX1587 features very low quiescent current and a low dropout voltage of 1.1V at a full load. As output current decreases, quiescent current flows into the load, increasing efficiency. SPX1587 is available in adjustable or fixed 1.5V, 2.5V, 3.3V and 5.0V output voltages.

The SPX1587 is offered in several 3-pin surface mount packages: TO-252, TO-220 and TO-263. An output capacitor of 10μ F ceramic or tantalum provides unconditional stability.

Adjustable and 3.3V TO-263 versions available, TO-252 and TO-220 versions obsolete

APPLICATIONS

- Desktop PC's Servers
- Powering VGA and Sound Cards
- Adjustable Power Supplies
- Portable Instrumentation

FEATURES

- Guaranteed 3A Output Current
- Three Terminal Adjustable or Fixed 1.5V, 2.5V, 3.3V and 5.0V
- Low Quiescent Current
- Low Dropout Voltage: 1.1V at 3A
- Line Regulation: 0.1%
- Load Regulation: 0.1%
- Stable with 10uF Ceramic Capacitor
- Over Current and Thermal Protection
- Similar to Industry Standard LT1587
- RoHS Compliant Lead Free 3-Pin TO-220, TO-252 and TO-263 Packages

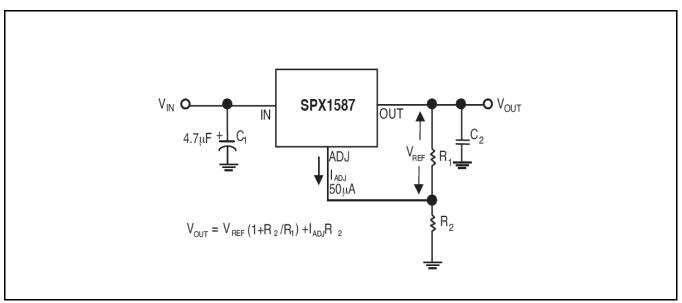


Fig. 1: SPX1587 Functional Diagram (Adjustable version)

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Input Supply Voltage VIN	+10.0V
Input to Output Voltage	+8.8V
Storage Temperature	65°C to 150°C
Power Dissipation	. Internally Limited
Lead Temperature (Soldering, 5 sec)	
1 (5, ,	

OPERATING RATINGS

Adjustable and 3.3V TO-263 versions available, TO-252 and TO-220 versions obsolete

3A Low Dropout Voltage Regulator

Junction Temperature Range	40°C to 125°C
Thermal Resistance	
TO-220 θ _{JC}	3°C/W
ΤΟ-220 θ _{JA}	29.4°C/W
TO-263 θ _{JC}	3°C/W
ΤΟ-263 θ _{JA}	31.4°C/W
TO-252 θ _{JC}	6°C/W
ΤΟ-252 θ _{JA}	50°C/W

ELECTRICAL SPECIFICATIONS

Specifications with standard type are for an Operating Ambient Temperature of $T_A = 25^{\circ}C$ only; limits applying over the full Operating Temperature range (-40°C to +85°C) are denoted by a "•". Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_A = 25^{\circ}C$, and are provided for reference purposes only. Unless otherwise indicated, $V_{IN} = V_{OUT} + 1.5V$, $T_A = 25^{\circ}C$, $C_{IN} = C_{OUT} = 10\mu$ F, $I_{OUT}=10$ mA.

Parameter	Min.	Тур.	Max.	Units		Conditions
1.5V Version						
Output Voltage	1.485	1.500	1.515	v		IOUT=10mA, VOUT=3.5V
SPX1587A	1.470		1.530	v	•	$10\text{mA} \le I_{\text{OUT}} \le 3A$, $3.0\text{V} \le V_{\text{OUT}} \le 10\text{V}$
2.5V Version						
Output Voltage	2.450	2.500	2.550	v		I _{OUT} =10mA, V _{OUT} =4.5V
SPX1587	2.425		2.575	v	•	$10\text{mA} \le I_{\text{OUT}} \le 3A$, $4.25V \le I_{\text{OUT}} \le 10V$
3.3V Version						
Output Voltage	3.267	3.300	3.333	v		I _{OUT} =10mA, V _{OUT} =5V
SPX1587A	3.234		3.366	v	•	10mA≤I _{OUT} ≤3A, 4.75V≤V _{OUT} ≤10V
Output Voltage	3.234	3.300	3.366	v		Iout=10mA, Vout=5V
SPX1587	3.201		3.399	v	•	$10mA \le I_{OUT} \le 3A$, $4.75V \le V_{OUT} \le 10V$
5.0V Version						
Output Voltage	4.950	5.000	5.050	v		I _{OUT} =10mA, V _{OUT} =7V
SPX1587A	4.900		5.100	v	•	$10mA \le I_{OUT} \le 3A$, $6.50V \le V_{OUT} \le 10V$
All Voltage Options						
Reference Voltage	1.238	1.250 1.262		v		Iout=10mA, VIN-VOUT=2V
SPX1587A	1.225		1.275	v	•	$10\text{mA} \le I_{\text{OUT}} \le 3A$, $1.50\text{V} \le V_{\text{IN}} - V_{\text{OUT}} \le 10\text{V}$
Reference Voltage	1.225	1.250	1.275	v		Iout=10mA, VIN-VOUT=2V
SPX1587	1.212		1.287	v	•	$10\text{mA} \le I_{\text{OUT}} \le 3A$, $1.50\text{V} \le V_{\text{IN}} - V_{\text{OUT}} \le 10\text{V}$
Output Voltage Temperature Stability – SPX1587A		0.3		%		
Output Voltage Temperature Stability – SPX1587		0.5		%		
						$3.0V \le V_{IN} \le 10V, V_{OUT} = 1.5V$
Line Deculation		0.1	0.0	0/		4.25V≤VIN≤10V, Vout=2.5V
Line Regulation		0.1	0.2	%		4.75V≤VIN≤10V, V _{OUT} =3.3V
						6.50V≤VIN≤10V, V _{OUT} =5.0V
						10mA≤Iout≤3A, Vout=1.5V
Land Deculation		0.1	0.3	%		$10\text{mA} \le I_{\text{OUT}} \le 3A$, $V_{\text{OUT}} = 2.5V$
Load Regulation		0.1	0.3	70		10mA≤Iout≤3A, Vout=3.3V
						10mA≤I _{OUT} ≤3A, V _{OUT} =5.0V

SPX1587

3A Low Dropout Voltage Regulator

Parameter	Min.	Тур.	Max.	Units		Conditions
		1.00				I _{OUT} =1A
Dropout Voltage (note 2)		1.05		V		I _{OUT} =2A
		1.10	1.2			I _{OUT} =3A
Minimum Load Current (note 4)		4	10	mA		
Quiescent Current		4	10	mA		Fixed Voltage Versions
A divert Die Comment		50		μA		
Adjust Pin Current			120	μA	٠	
Current Limit	3.2	5		Α		V _{IN} -V _{OUT} =2V
Thermal Regulation		0.01	0.1	%/W		25°C, 30ms pulse
Ripple Rejection	60	75		dB		FRIPPLE=120Hz, VIN-VOUT=2V, VRIPPLE=1VPP
Long Term Stability		0.03		%		125°C, 1000 hours
RMS Output Noise		0.03		%		% of V _{OUT} , 10Hz \leq f \leq 10kHz

Note 1: Output temperature coefficient is defined as the worst-case voltage change divided by the total temperature range Note 2: Dropout voltage is defined as the input to output differential at which the output voltage drops 100mV below its nominal value measured at 1V differential at very low values of programmed output voltage, the minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.

Note 3: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied. Excluding load or line regulation effect.

Note 4: Adjustable Version Only.

BLOCK DIAGRAM

Fig. 2: SPX1587 Block Diagram

PIN ASSIGNMENT

Adjustable and 3.3V TO-263 versions available, TO-252 and TO-220 versions obsolete

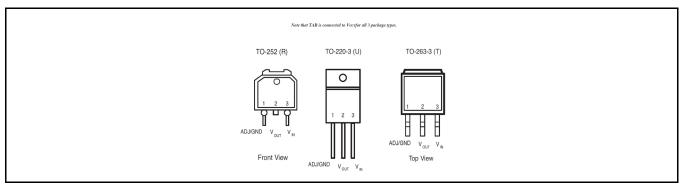
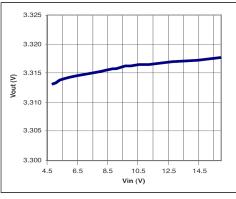


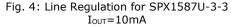
Fig. 3: SPX1587 Pin Assignment

PIN DESCRIPTION

Name	Pin Number	Description
ADJ/GND	1	Adjustable Voltage Pin or Ground signal for fixed voltage versions.
VOUT	2	Output Voltage
VIN	3	Input Voltage
TAB	TAB	Tab is connected to VOUT (pin 2) for all packages

ORDERING INFORMATION


Part Number	Junction Temperature Range	Lead-Free	Package	Packing Quantity		
SPX1587AT-L/TR		Yes	TO-263-3	E00/Tapa & Roal		
SPX1587AT-L-3-3/TR	-40°C≤Tյ≤+125°C	res	10-203-3	500/Tape & Reel		


NOTE: For more information about part numbers, as well as the most up-to-date ordering information and additional information on environmental rating, go to <u>www.maxlinear.com/SPX1587</u>.

TYPICAL PERFORMANCE CHARACTERISTICS

All data taken at $V_{IN} = V_{OUT} + 1.5V$, $T_A = 25^{\circ}C$, $C_{IN} = C_{OUT} = 10\mu$ F, $I_{OUT} = 10$ mA unless otherwise specified - Schematic and BOM from Application Information section of this datasheet.

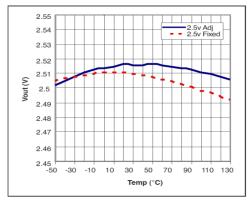


Fig. 6: V_{OUT} versus Temperature V_{IN} =4.0V, I_{OUT} =10mA

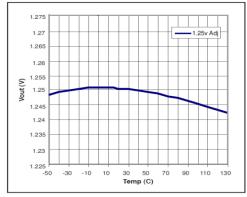


Fig. 5: V_{OUT} versus Temperature V_{IN} =2.5V, I_{OUT} =10mA

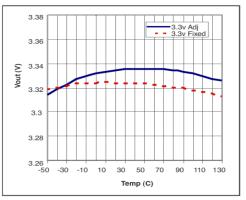


Fig. 7: V_{OUT} versus Temperature V_{IN} =5.0V, I_{OUT} =10mA

APPLICATION INFORMATION

OUTPUT CAPACITOR

To ensure the stability of the SPX1587, an output capacitor of at least 10µF (ceramic or tantalum) or 22µF (aluminum) is required. The value may change based on the application requirements of the output load or temperature range. The value of ESR can vary based on the type of capacitor used in the applications to guarantee stability. The recommended value for ESR is 0.5Ω or less. A larger value of output capacitance (up to 100µF) can improve the load transient response.

SOLDERING METHODS

The SPX1587 die is attached to the heatsink lead which exits opposite the input, output, and ground pins.

THERMAL CHARACTERISTICS

The SPX1587 features the internal thermal limiting to protect the device during overload conditions. Special care needs to be taken during continuous load conditions such that the maximum junction temperature does not exceed 125°C. Thermal protection is activated at >179°C and deactivated at <165 °C.

The thermal interaction from other components in the application can affect the

thermal resistance of the SPX1587. The actual thermal resistance can be determined with experimentation.

The SPX1587 power dissipation is calculated as follows:

$$P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$$

Maximum Junction Temperature range:

$$T_J = T_{A(MAX)} + P_D \times \theta_{JA}$$

Where θ_{JA} is the junction-to-ambient thermal resistance of the package.

Maximum junction temperature must not exceed 125°C.

RIPPLE REJECTION

Ripple rejection can be improved by adding a capacitor between the ADJ pin and ground as shown in Figure 11. When ADJ pin bypassing is used, the value of the output capacitor required increases to its maximum. If the ADJ pin is not bypassed, the value of the output capacitor can be lowered to 22μ F for an electrolytic aluminum capacitor or 10μ F for a solid tantalum capacitor (Fig 10).

However, the value of the ADJ-bypass capacitor should be chosen with respect to the following equation:

$$C = \frac{1}{6.28 \times F_R \times R_1}$$

Where

C = value of the capacitor in Farads (select an equal or larger standard value)

F_R = ripple frequency in Hz

 R_1 = value of resistor R1 in Ohms.

3A Low Dropout Voltage Regulator

If an ADJ-bypass capacitor is used, the amplitude of the output ripple will be independent of the output voltage. If an ADJbypass capacitor is not used, the output ripple will be proportional to the ratio of the output voltage to the reference voltage:

$$M = \frac{V_{OUT}}{V_{REF}}$$

Where

M = multiplier for the ripple seen when the ADJ pin is optimally bypassed.

 $V_{REF}=1.25V$

Ripple rejection for the adjustable version is showing in Figure 8.

OUTPUT VOLTAGE

The output of the adjustable regulator can be set to any voltage between 1.25V and 15V. The value of V_{OUT} can be quickly approximated using the formula

$$V_{OUT} = 1.25 \times \frac{R_1 + R_2}{R_1}$$

Small correction to this formula is required depending on the values of resistors R1 and R2, since the adjustable pin current (approx 50μ A) flows through R2. When I_{ADJ} is taken into account, the formula becomes

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R_2}{R_1}\right) + I_{ADJ} \times R_2$$

Where

 $V_{REF}=1.25V$

LAYOUT CONSIDERATIONS

Parasitic line resistance can degrade load regulation. In order to avoid this, connect R1 directly to V_{OUT} as illustrated in Figure 13. For the same reason, R2 should be connected to the negative side of the load.

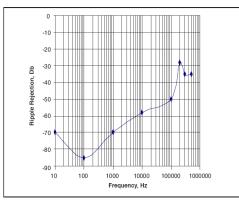


Fig. 8: Ripple Rejection $V_{\rm IN}{=}3.3V,\,V_{\rm OUT}{=}1.8V(adj),\,I_{\rm LOAD}{=}200mA$

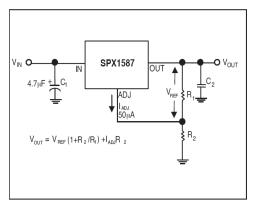


Fig. 10: Typical Adjustable Regulator

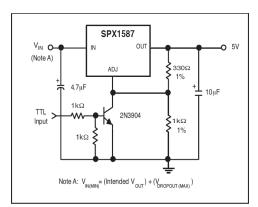


Fig. 12: 5V Regulator with Shutdown

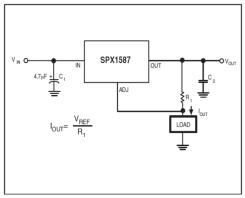


Fig. 9: Current Source

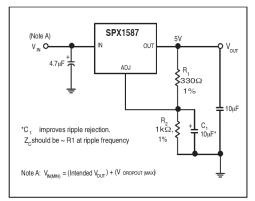


Fig. 11: Improving Ripple Rejection

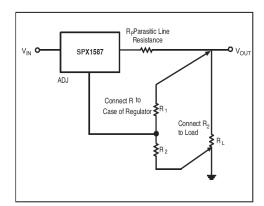
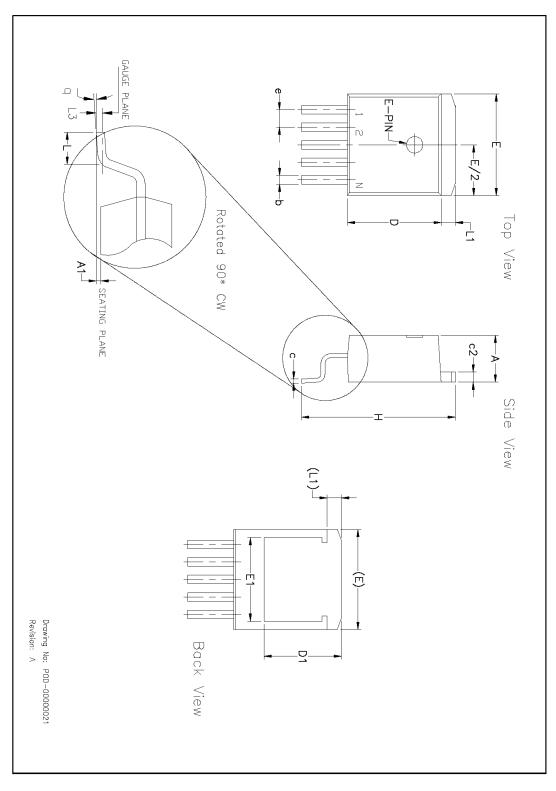
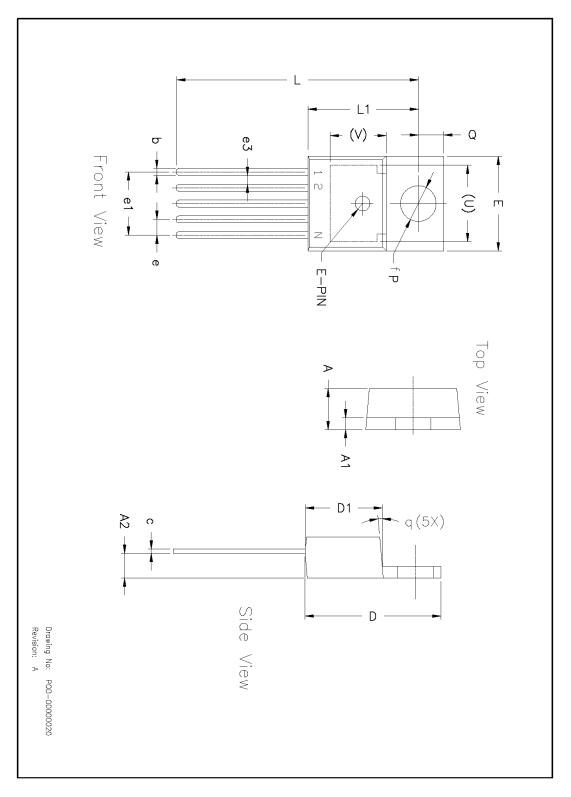



Fig. 13: Recommended Connections for Best Results

PACKAGE SPECIFICATION

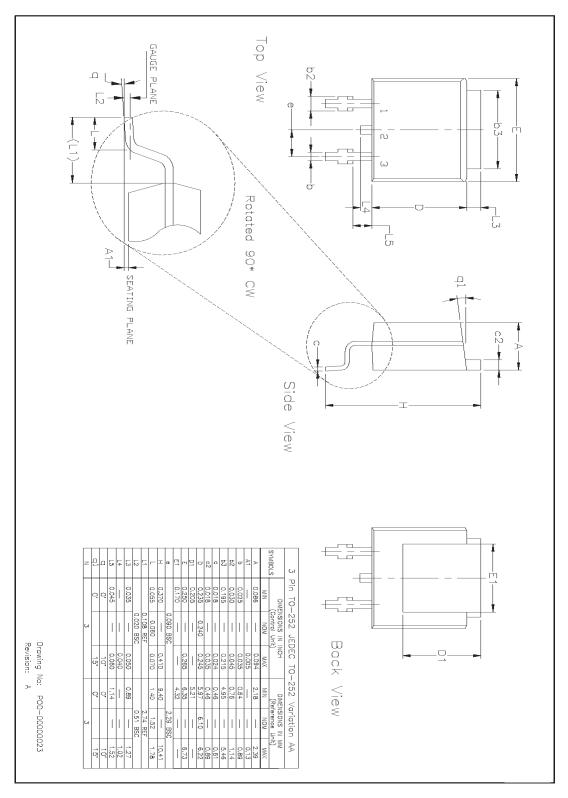
3-PIN TO-263


N	۵	L3	5	L	т	n	Ē	ГП	D1	D	c2	0	b2	σ	A1	A		SYMBOLS		3 Pin
	°,	.0		0.070	0.575		0.245	0.380	0.270	0.330	0.045	0.015	0.045	0.020	0.000	0.160	MIN	(C	DIMEN	n TO-263
Ś		0.010 BSC				0.100 BSC											NOM	(Control Unit)	DIMENSIONS IN INCH	53 JEDEC
	œ	0	0.066	0.110	0.625	0		0.420		0.380	0.065	0.029	0.070	0.039	0.010	0.190	MAX	nit)	INCH	
	°,	.0		1.78	14.61	N	6.22	9.65	6.86	8.38	1.14	0.38	1.14	0.51	0.00	4.06	MIN	(Refe	DIMENS	TO-263 Variation AA
ŝ		.25 BSC				.54 BSC											NOM	(Reference Unit)	DIMENSIONS IN MM	iation /
	¢		1.68	2.79	15.88			10.67		9.65	1.65	0.74	1.78	0.99	0.25	4.83	MAX	Init)	MM	Å
																		17S		
Z		5			Т	0	-	<u>,</u> L		2 0		2	0	σ	A1	A		SYMBOLS		5 Pin
	ç			0.070	0.575		0.240		0.200	0.000	0.230	0 045	0.015	0.020	0.000	0.160	MIN	(C	DIMEN	
U		0.010 BSC				0.067 BSC											NON	Control Unit)	DIMENSIONS IN INCH	63 JED
	çő	Ö	0.066	0.110	0.625	Î		0.420	20		0 380	0.065	0.029	0.039	0.010	0.190	MAX	nit)	INCH	T0-263 JEDEC T0-263
	°,			1.78	14.61		0.22	n			87 A	1 14	0.38	0.51	0.00	4.06	MIN	(Ref	DIMEN	~
σ		0.25 BSC				1.70 BSC											NOM	(Reference Unit)	WW NI SNOISN	Variation
	00		1.68	2.79	15.88			10.0/	100		د. م. ۵	1 55	0.74	0.99	0.25	4.83	MAX	Unit)	N MM	ΒA

Drawing No: POD-00000021 Revision: A

3-PIN TO-220

TO-220 version obsolete



z		1 -	<	0	P 0	-	L 0	H1 0	e,	ſÞ	E1 0	т 0	D2 0	D1 0	0	0 0	ь 0	A2 0	A1 0	A 0.	-	SYMBOLS DIM	3 Pin T0-2:
0	1 - C	4	0 940	0.103	0.139		0.500	0.230	0.200	0.100	0.270	0.380	0.480	0.330	0.560	0.014	0.015	0.080	0.020	0.140	MIN	ENSIONS (Control	20 (Opti
	`	1	P	0.113	0.156	0.250	0.580	0.270	BSC	BSC	0.350	0,420	0.507	0.355	0.650	0.024	0.040	0.115	0.055	0.190	MAX	DIMENSIONS IN INCH (Control Unit)	on 1)* J
0		· .	۵ I D	2.62	3.53		12.70	5.84	5.08	2.54	6,86	9.65	12.19	8.38	14.22	0.36	0.38	2.03	0.51	3.56	MIN	DIMENSIONS (Reference	T0-220 (Option 1)* JEDEC T0-220-AB
		7.	, ק	2.87	3.96	6.35	14.73	6.86	BSC	BSC	8.89	10.67	12.88	9.02	16.51	0.61	1.02	2.92	1.40	4.82	MAX	ce Unit)	-220-AB
		_																				S	
z	1	•	<	ø	σ	5	L	H1	e1	¢	Ξ	m	D2	9	o	D	σ	A2	A1	A		SYMBOLS	
	c	4	0 240	0.103	0,139	0.345	0.500	0.230	0.200	0.100	0.270	0.380	0.480	0.330	0.560	0.014	0.015	0.080	0.020	0.140	MIN	DIMENSION (Contr	3 Pin
				0.113	0.156	BSC	0.580	0.270	BSC	BSC	0.350	0.420	0.507	0.355	0.650	0.024	0.040	0.115	0.055	0.190	MAX	(Control Unit)	Pin T0-220
	c	4	s 10	2.62	3.53	8.76	12,70	5.84	5.08	2.54	6.86	9.65	12.19	8.38	14.22	0.36	0.38	2.03	0.51	3.56	MIN	DIMENSIONS (Reference	(Option 2
				2.87	3.96	BSC	14.73	6.86	3 BSC	1 BSC	8.89	10.67	12.88	9.02	16.51	0.61	1.02	2.92	1.40	4.82	MAX	nce Unit)	2)*
_	1					1					_											10	
z	ם	<	<		Ø	٦	5	-	eύ				1 <u>5</u>	ב	-	0	σ	R2	A1	A		SYMBOLS	5 Pin 1
()	L.	⊐.	0	0.30	0.103	0.139	0.465	0.945	0.030	0.263	/ 90.0	0.200		0.330	0.570	0.012	0.020	0.085	0.035	0.165	MIN	DIMENSIONS IN (Control Uni	TO-220 J
U	/			0.300 REF	0.113	0.156	0.539	1.045	0.040	0.273			0.070	0.370	70807	0.025	0.040	0.115	0.055	0.190	MAX	Unit I	JEDEC TS-
	ں ا	- D. I.	,	7.62	2.62	3.53	11.81	24.00	0.76	0.68	2 22 I./U	16.6		B 30	14 48	0.31	0.51	2.16	0.89	4.19	MIN	NCH DIMENSIONS IN MM (Reference Unit)	TS-001 Variation AA
U	/			2 REF	2.87	3.96	13.69	26.54	1.02	0.90	α	10.04		0.70 (0.01	17.87	0.63	1.01	2.92	1.39	4.82	MAX	nce Unit)	tion AA

3-Pin TO-252

TO-252 version obsolete

3A Low Dropout Voltage Regulator

REVISION HISTORY

Revision	Date	Description
2.0.0	September, 2010	Reformat of datasheet Added marking information
2.0.1	June 26, 2023	 Updated: In "Features" section, industry standard "LT1085/LT1585" replaced with "LT1587". In "Package Specification" section: "3-pin TO-263" figure. "3-pin TO-220" figure. "3-pin TO-252" figure. Removed: In "Ordering Information" table, SPX1587T-L, SPX1587T-L/TR, SPX1587T-L-1-5, SPX1587T-L-1-5/TR, SPX1587T-L-5-0, SPX1587T-L-5-0/TR, SPX1587T-L-3-3, SPX1587U-L-5-0, SPX1587AR-L, SPX1587AR-L/TR, SPX1587AR-L/TR, SPX1587AT-L-3-3, and SPX1587AU-L obsolete part numbers. Removed also "Marking" column.

MaxLinear, Inc.: 5966 La Place Court Suite 100 Carlsbad, CA 92008 Tel.: +1 (760) 692-0711 Fax: +1 (760) 444-8598 www.maxlinear.com

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this document. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.

EXCEPT AS OTHERWISE PROVIDED EXPRESSLY IN WRITING BY MAXLINEAR, AND TO THE MAXIMUM EXTENT PERMITTED BY LAW: (A) THE MAXLINEAR PRODUCTS ARE PROVIDED ON AN "AS IS" BASIS WITHOUT REPRESENTATIONS OR WARRANTIES OF ANY KIND, INCLUDING WITHOUT LIMITATION ANY IMPLIED OR STATUTORY WARRANTIES AND ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; AND (B) MAXLINEAR DOES NOT GUARANTEE THAT THE PRODUCTS WILL BE FREE OF ERRORS OR DEFECTS. MAXLINEAR PRODUCTS SHOULD NOT BE USED IN ANY EMERGENCY, SECURITY, MILITARY, LIFE-SAVING, OR OTHER CRITICAL USE CASE WHERE A FAILURE OR MALFUNCTION COULD CAUSE PERSONAL INJURY OR DEATH, OR DAMAGE TO OR LOSS OF PROPERTY. USERS ASSUME ALL RISK FOR USING THE MAXLINEAR PRODUCTS IN SUCH USE CASE. CUSTOMERS AND USERS ARE SOLELY RESPONSIBLE FOR USING THEIR OWN SKILL AND JUDGMENT TO DETERMINE WHETHER MAXLINEAR PRODUCTS ARE SUITABLE FOR THE INTENDED USE CASE.

MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

MaxLinear, the MaxLinear logo, any other MaxLinear trademarks (including but not limited to MxL, Full-Spectrum Capture, FSC, AirPHY, Puma, AnyWAN, VectorBoost, MXL WARE, and Panther), and the MaxLinear logo on the products sold are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

All third-party products, company names and logos are trademarks[™] or registered® trademarks and remain the property of their respective holders/owners. Use of such marks does not imply any affiliation with, sponsorship or endorsement by the owners/holders of such trademarks. All references by MaxLinear to third party trademarks are intended to constitute nominative fair use under applicable trademark laws.

The URLs provided are for informational purposes only; they do not constitute an endorsement or an approval by MaxLinear of any of the products or services of the corporation or organization or individual. MaxLinear bears no responsibility for the accuracy, legality or content of the external site or for that of subsequent links. Contact the external site for answers to questions regarding its content. © 2023 MaxLinear, Inc. All rights reserved.