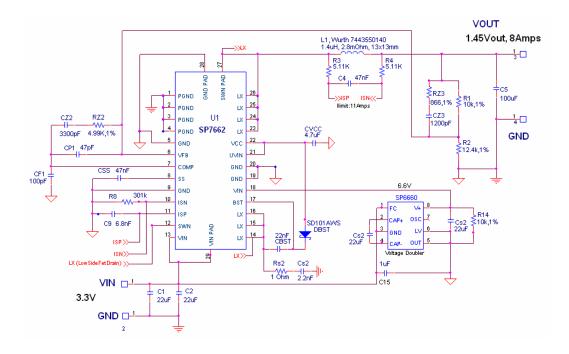


Designed by: Tim Sullivan

Part Number: SP7662

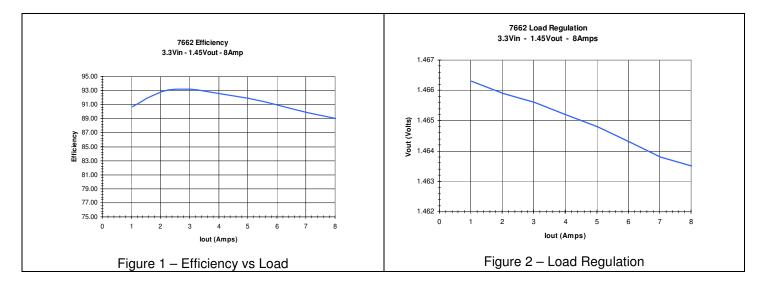

Application Description: An SP7662 PowerBlox[™] is used to create a 1.45Volt output from a 3.3Volt source. A voltage doubler is used to create the 5Volts required for the SP7662 Vcc voltage.

Electrical Requirements:

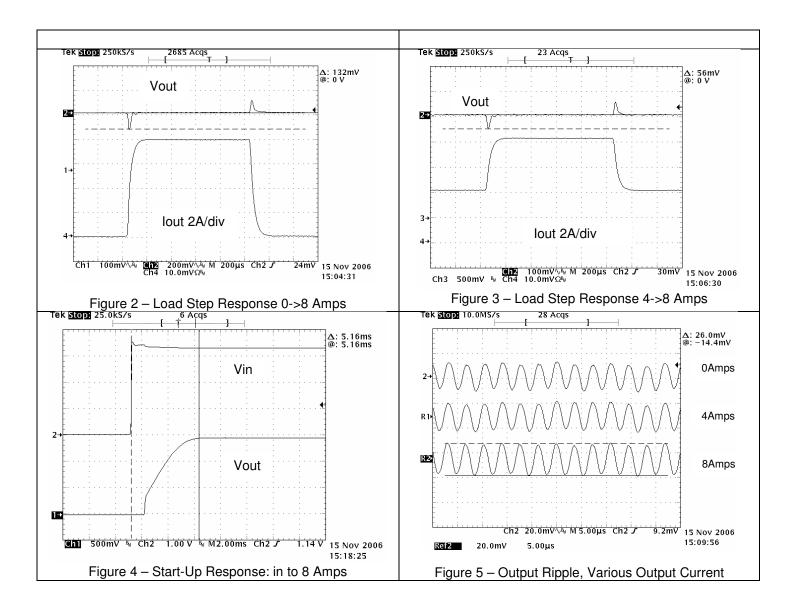
Input Voltage:	3.3V +/-2%
Output Voltage:	1.45 Volts
Output Current:	up to 8A capable

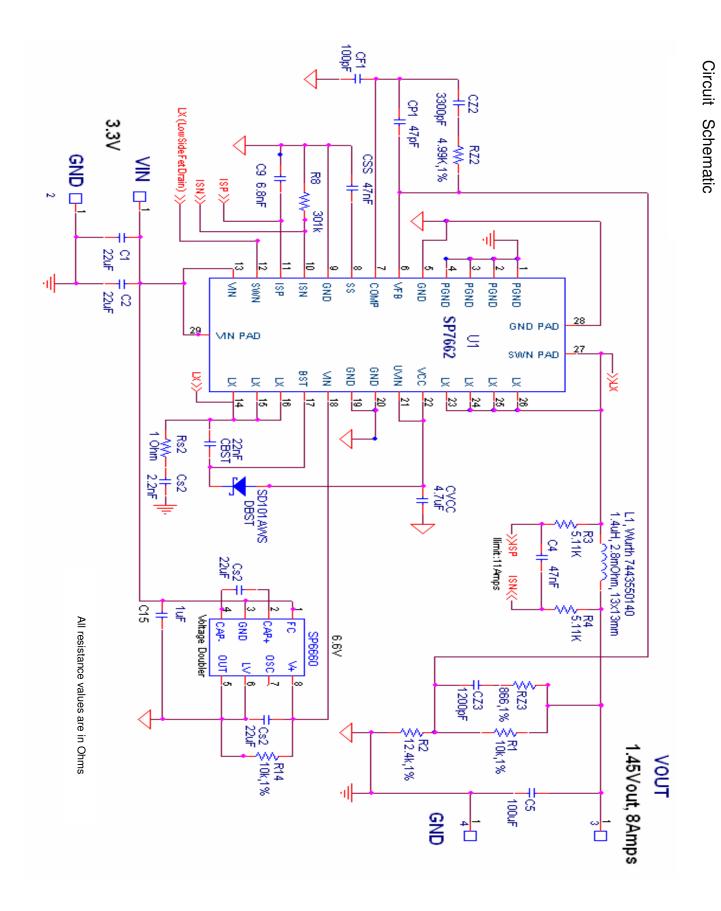
Circuit Description:

This circuit has been designed to provide 1.45Volts from a 3.3Volt nominal supply. It uses the PowerBlox[™] solution SP7662 and 32 parts (not including PCB and I/O pins) and uses approximately 2 square inches of board space. It is possible to maintain this small area usage due to the incorporation of the high- and low-side FETs and the PWM controller into one package.


The solution uses a Wurth 13x14x5mm, low resistance inductor which is a good balance of size and performance for this application. An inexpensive Sipex SP6660 was used to provide the 5V Vcc for the part. Ceramic capacitors were used on the converter input and output and a Type III feedback configuration was implemented to provide excellent transient response. For further information on implementing Type III loop configuration, see this application note on the Sipex website:

http://www.sipex.com/files/ApplicationNotes/Type%20III%20Loop%20Compensation%20Oct12-06.pdf

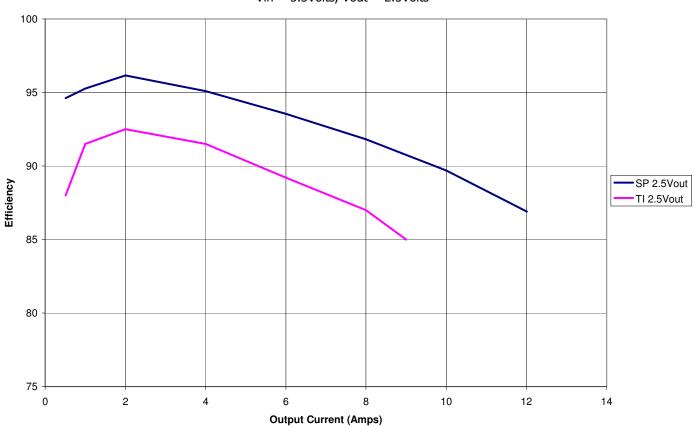

The feedback components for a different configuration of output voltage, output inductor, and/or output capacitor can be calculated and simulated using the Sipex PowerBloxTM Power Lab. A link is provided from the main Sipex web page at <u>www.sipex.com</u>. One design note on the SP6660 circuit is the addition of R14. This 10k Ω resistor ensures the SP6660 starts each power up from an output voltage of 0Volts. Without this resistor the SP6660 may not start when the input voltage is cycled quickly.


This report includes an application schematic complete with component values, a full Bill of Materials, and figures illustrating the electrical performance of the design. It ends with a comparison to a similar part from Texas Instruments.

Performance Measurements

Performance Measurements

Converter Bill of Materials:


	<u>7662</u>		3.3Vin 1.45Vout	8Amps		
Line	Ref.	Qty.	Manufacturer	Layout	Component	Vendor
No.	Des.			Size		Phone #
1	PCB	1	Sipex		SP7662EB-07	978-667-7800
2	U1	1	Sipex	DFN-26	7662 Buck Regulator	978-667-7800
3	DBST	1	Vishay Semi	SOD-323	SD101AWS 15mA-30V Schottky	800-344-4539
4	L1	1	Wurth	5050	1.4uH, 2.8mΩ, 22A, 7443550140	201-785-8800
5	C1, C2	2	Murata	1210	22uF Ceramic X5R 6.3V	978-779-3111
6	C5	1	Murata	1210	100uF Ceramic X5R 6.3V	978-779-3111
7	C4,	1	Murata	0603	47nF Ceramic X7R 50V	978-779-3111
8	CBST	1	Murata	0603	0.1uF Ceramic X7R 50V	978-779-3111
9	C9	1	Murata	0603	6.8nF Ceramic X7R 50V	978-779-3111
10	CVCC	1	Taiyo Yuden	0603	4.7uF Ceramic X5R 10V	800-388-2496
11	CF1	1	Murata	0603	100pF Ceramic C0G 50V	978-779-3111
12	Cs2	1	Murata	0603	2.2nF Ceramic C0G 50V	978-779-3111
13	CSS1	1	Murata	0603	47nF Ceramic X7R 50V	978-779-3111
14	CP1	1	Murata	0603	47pF Ceramic C0G 50V	978-779-3111
15	CZ2	1	Murata	0603	3300pF Ceramic C0G 50V	978-779-3111
16	CZ3	1	Murata	0603	1200pF Ceramic C0G 50V	978-779-3111
17	R1	1	Panasonic	0603	10k Ohm Thick Film Res 1%	800-344-4539
18	R2	1	Panasonic	0603	12.4k Ohm Thick Film Res 1%	800-344-4539
19	R3, R4	2	Panasonic	0603	4.99k Ohm Thick Film Res 1%	800-344-4539
20	R12	*1	Panasonic	0603	0 Ohm Thick Film Res 1%	800-344-4539
21	R8	1	Panasonic	0603	301k Ohm Thick Film Res 1%	800-344-4539
22	R11	*1	Panasonic	0603	0 Ohm Thick Film Res 1%	800-344-4539
23	RBST	*1	Panasonic	0603	0 Ohm Thick Film Res 1%	800-344-4539
24	Rs2	1	Panasonic	0603	1 Ohm Thick Film Res 1%	800-344-4539
25	RZ2	1	Panasonic	0603	4.99k Ohm Thick Film Res 1%	800-344-4539
26	RZ3	1	Panasonic	0603	866 Ohm Thick Film Res 1%	800-344-4539
27	VIN, VOUT, GND x 2	4	Vector Electronic	.042 Dia	Test Point Post	800-344-4539

*=required for demo board operation, not required for end application

6660 Voltage Doubler					
Voltage Doubler	1	Sipex	uSOIC	SP6660 Charge Pump or Inverter	978-667-7800
CD1, CD2	2	Murata	1210	22uF Ceramic X5R 10V	978-779-3111
RD1	1	Panasonic	0603	10k Ohm Thick Film Res 1%	800-344-4539
CD3	1	Murata	0603	1uF Ceramic X5R 50V	978-779-3111

Jul6-07

Efficiency Comparison:

Sipex SP7662 and Texas Instruments TPS54973 Efficiency Comparison Vin = 3.3Volts, Vout = 2.5Volts

For further assistance:

 Email:
 Sipexsupport@sipex.com

 W W Support page:
 http://www.sipex.com/content.aspx?p=support

 Sipex Application Notes:
 http://www.sipex.com/applicationNotes.aspx

 Type III loop Compensation Application Note:
 http://www.sipex.com/files/ApplicationNotes/Type%20III%20Loop%20Compensation

 Type III loop Compensation Calculator:
 http://www.sipex.com/files/ApplicationNotes/TypeIIICalculator.xls

Sipex Corporation Headquarters and Sales Office

Headquarters and Sales Office 233 South Hillview Drive Milpitas, CA95035 tel: (408) 934-7500 faX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.