SP7662 Buck Converter for up to 12A LED Driver

Designed by: Tim Sullivan

Part Number: SP7662

Application Description: 15Vin Buck Converter for an up to 12 Amp LED driver

Electrical Requirements:

Input Voltage	15V +/-5volts
Output Voltage	5Volts Max.
	LED forward voltage ~ 3.6 volts
	LED test bank: 16 X Luxeon LXHLMW1D
Output Current	up to 12A capable. ~ 10 Amps solution tested

Circuit Description:

This circuit has been designed to provide up to 5 volts at up to 12 amps from a 15 volt nominal supply. By using low-ohm sense resistors in series with the LED and using the sense resistors as our feedback reference the supply was configured as a current source. (see schematic figure 7) To minimize power dissipation in these resistors the nominal 0.8 V reference was not used. The softstart pin on the 7662 is also the non-inverting input to the internal error amplifier - this allows a divider to be created to lower the internal reference used for voltage regulation. This report includes the application schematic complete with component part numbers and figures 1 8 illustrating electrical performance of the design.

A divider was created from the Vcc output creating 0.2 Volts to be fed in to the softstart pin and used as the new feedback reference. This also means the voltage on the softstart pin could be used to vary LED intensity by varying the current through the device. A pin was also provided on the demo board to vary LED intensity by cycling power to the LED via the 7662 UVin input. The LED was cycled from 60 Hz to 1 kHz at varying duty cycles to vary light intensity and LED average current. Detailed results for operation at 100 Hz and 1 kHz are provided.

The converter was configured using type 1 compensation for simplicity. Over-current sensing was disabled by shorting the ISN/ISP pins to ground as the over current feature can not be used for output voltages >3.3 volts.

This report includes an application schematic complete with component values and figures illustrating the electrical performance of the design.

Converter Performance Data 100Hz

Figure 1

7662 LED Driver Efficiency
(LED pulsed at 100 Hz at noted duty cycle)

DutyCycle	LED	Converter
100	88.4	93.8
95	84.5	89.3
86	81.8	86.1
76	78.9	82.7
66	76.4	79.7
56	71.2	73.2
46	68.9	70.6
36	66.7	67.9
27	65.6	66.5
17	61.8	62.2
13	61.8	62.1

Note: Input duty cycle to Uvin shown above. Actual duty cycle to LED shown in chart below as \%of lout Max

Figure 2

Converter Performance Data 1 kHz

Figure 1b

Input Duty Cycle vs. \%lout Max

DC Input	\%of lout Max
100	100
95	90
86	80
76	70
66	60
56	50
46	40
36	30
27	20
17	10
13	5.5

7662 LED Driver Efficiency (LED pulsed at 1 kHz at noted duty cycle)

Duty Cycle	LED	Converter
100	88.4	93.8
95	59.3	64.1
89	58.1	62.4
84	56.2	59.9
79	53.3	56.4
74	51.8	54.5
67	48.9	50.7
64	46.6	48.0
60	43.7	44.7
54	40.1	40.7
51	31.3	31.6

Note: Input duty cycle to Uvin shown above. Actual duty cycle to LED shown in chart below as \%of lout Max

Input Duty Cycle vs. \%lout Max

DC Input	\%of lout Max
100	100
95	90
89	80
84	69.5
79	59.6
74	50.6
67	40
64	30.4
60	20
54	11.2
51	5.1

Figure 2b

Circuit Waveforms

Figure 3 - Ch. 2 Output Ripple Voltage
Ch. 1 Input Ripple Voltage. 15Vin -10.7A Out.

Figure 5 - Duty Cycle Signal to UVIN (CNTRL)

Figure 4 -
Start -up output voltage (LED and Sense Resistors)

Figure 6 - LX (switchnode) of converter 15Vin

Figure 7 - Application Schematic

For further assistance:

Email:
WWW Support page: Sipex Application Notes:

Sipexsupport@sipex.com
http://www.sipex.com/content.aspx?p=support http://www.sipex.com/applicationNotes.aspx

Sipex Corporation
Headquarters and
Sales Office
233 South Hillview Drive
233 South Hillview
Milpitas, CA95035
Milpitas, CA95035
tel: (408) 934-7500
faX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

