

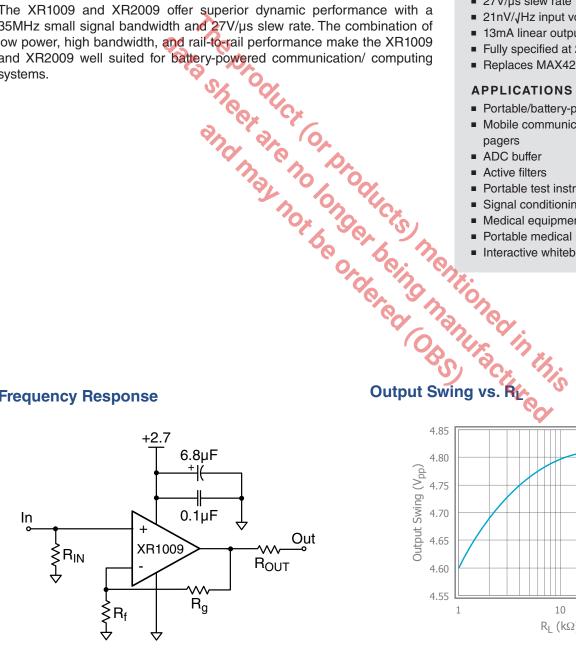
XR1009, XR2009

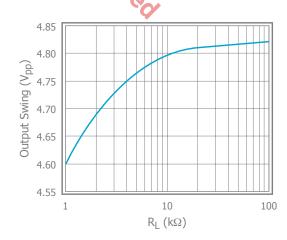
0.2mA, 35MHz Rail-to-Rail Amplifiers

General Description

The XR1009 (single) and XR2009 (dual) are ultra-low power, low cost, voltage feedback amplifiers. These amplifiers use only 208µA of supply current and are designed to operate from a supply range of 2.5V to 5.5V (±1.25 to ±2.75). The input voltage range extends 300mV below the negative rail and 1.2V below the positive rail.

The XR1009 and XR2009 offer superior dynamic performance with a 35MHz small signal bandwidth and 27V/µs slew rate. The combination of low power, high bandwidth, and rail-to-rail performance make the XR1009 and XR2009 well suited for battery-powered communication/ computing systems.


FEATURES


- 208µA supply current
- 35MHz bandwidth
- Input voltage range with 5V supply: -0.3V to 3.8V
- Output voltage range with 5V supply: 0.08V to 4.88V
- 27V/µs slew rate
- 21nV/JHz input voltage noise
- 13mA linear output current
- Fully specified at 2.7V and 5V supplies
- Replaces MAX4281

- Portable/battery-powered applications
- Mobile communications, cell phones,

- Portable test instruments
- Signal conditioning
- Medical equipment
- Portable medical instrumentation
- Interactive whiteboards

Frequency Response

Absolute Maximum Ratings

Stresses beyond the limits listed below may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

V _S	0V to 6V
V _{IN}	V_S - 0.5V to + V_S +0.5V
Continuous Output Current	30mA to +30mA

Operating Conditions

Supply Voltage Range	2.5 to 5.5V
Operating Temperature Range	40°C to 125°C
Junction Temperature	150°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10s)	260°C

Package Thermal Resistance

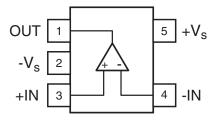
rent30mA to +30mA	θ _{JA} (TSOT23-5)	
	θ _{JA} (SOIC-8)	150°C/W
	θ _{JA} (MSOP-8)	200°C/W
data sheet are no long of the or brown or be or	Package thermal resistance (θ_{JA}), Ji test boards, still air.	EDEC standard, multi-layer
Yla Pr	ESD Protection	
S/2 0/1	XR1009 (HBM)	2kV
Co. Cx	XR2009 (HBM)	2.5kV
80 8 G	ESD Rating for HBM (Human Body Mo	odel).
10, 10, 1		
70 00 M		
\$\sum_{\begin{subarray}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		
70, 70	*C _p	
6		
	Op. 170.	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	y In The	
	Ch Op	
	ed la led	
	(On 4x 1)	
	OC 90 1/2.	
	· C	
	<b>Y</b>	

XR1009 (HBM)	2kV
XR2009 (HBM)	2.5kV
ESD Rating for HBM (Human Body Model).	

2/16 exar.com/XR1009 © 2014 Exar Corporation

# **Electrical Characteristics at +2.7V**

 $T_A$  = 25°C,  $V_S$  = +2.7V,  $R_f$  =  $R_g$  = 2.5k $\Omega$ ,  $R_L$  = 2k $\Omega$  to  $V_S/2;$  G = 2; unless otherwise noted.

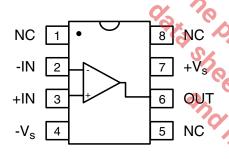

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Frequency [	Domain Response					
UGBW _{SS}	Unity Gain -3dB Bandwidth	$G = +1, V_{OUT} = 0.05V_{pp}, R_f = 0$		28		MHz
BW _{SS}	-3dB Bandwidth	$G = +2, V_{OUT} < 0.2V_{pp}$		15		MHz
BW _{LS}	Large Signal Bandwidth	$G = +2$ , $V_{OUT} = 2V_{pp}$		7		MHz
GBWP	Gain Bandwidth Product	$G = +11, V_{OUT} = 0.2V_{pp}$		16		MHz
Time Domai	n Response					
t _R , t _F	Rise and Fall Time	V _{OUT} = 0.2V step; (10% to 90%)		16		ns
t _S	Settling Time to 0.1%	V _{OUT} = 1V step		140		ns
OS	Overshoot	V _{OUT} = 1V step		1		%
SR	Slew Rate	G = -1, 2V step		20		V/µs
Distortion/N	oise Response					
HD2	2nd Harmonic Distortion	100kHz, $V_{OUT} = 1V_{pp}$		-85		dBc
HD3	3rd Harmonic Distortion	100kHz, V _{OUT} = 1V _{pp}		-63		dBc
THD	Total Harmonic Distortion	100kHz, $V_{OUT} = 1V_{pp}$		62		dB
e _n	Input Voltage Noise	>10kHz		23		nV/√Hz
XTALK	Crosstalk	100kHz, $V_{OUT} = 0.2V_{pp}$		98		dB
DC Perform	ance	0. 0				,
V _{IO}	Input Offset Voltage	70 70		0.8		mV
d _{VIO}	Average Drift	6 %		11		μV/°C
I _B	Input Bias Current	no no Cx		0.37		μA
dl _B	Average Drift	(2) QU (1)		1		nA/°C
I _{OS}	Input Offset Current	00 1/4 /2		8		nA
PSRR	Power Supply Rejection Ratio	DC O	56	60		dB
A _{OL}	Open Loop Gain	$V_{OUT} = V_S/2$		65		dB
Is	Supply Current	per channel		185		μA
Input Chara	cteristics	60 70 60				
R _{IN}	Input Resistance	Non-inverting		>10		ΜΩ
C _{IN}	Input Capacitance	000	2	1.4		pF
CMIR	Common Mode Input Range	120 Ch	The state of the s	-0.3 to 1.5		V
CMRR	Common Mode Rejection Ratio	DC, $V_{CM} = 0V$ to $V_S - 1.5V$	6	92		dB
Output Chai	acteristics		9		<u>'</u>	
V	Output Voltage Cuing	$R_L = 2k\Omega$ to $V_S$ / 2		0.08 to 2.6		V
V _{OUT}	Output Voltage Swing	$R_L = 10k\Omega$ to $V_S / 2$		0.06 to 2.62		V
I _{OUT}	Output Current			±8		mA
I _{SC}	Short Circuit Current			±12.5		mA

# **Electrical Characteristics at +5V**

 $T_A$  = 25°C,  $V_S$  = +5V,  $R_f$  =  $R_g$  = 2.5k $\Omega$ ,  $R_L$  = 2k $\Omega$  to  $V_S/2;$  G = 2; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Frequency I	Domain Response					
UGBW _{SS}	Unity Gain -3dB Bandwidth	$G = +1, V_{OUT} = 0.05V_{pp}, R_f = 0$		35		MHz
BW _{SS}	-3dB Bandwidth	G = +2, V _{OUT} < 0.2V _{pp}		18		MHz
BW _{LS}	Large Signal Bandwidth	G = +2, V _{OUT} = 2V _{pp}		8		MHz
GBWP	Gain Bandwidth Product	$G = +11, V_{OUT} = 0.2V_{pp}$		20		MHz
Time Doma	in Response					
t _R , t _F	Rise and Fall Time	V _{OUT} = 0.2V step; (10% to 90%)		13		ns
t _S	Settling Time to 0.1%	V _{OUT} = 1V step		140		ns
OS	Overshoot	V _{OUT} = 1V step		1		%
SR	Slew Rate	G = -1, 2V step		27		V/µs
Distortion/N	oise Response					
HD2	2nd Harmonic Distortion	100kHz, $V_{OUT} = 2V_{pp}$		-78		dBc
HD3	3rd Harmonic Distortion	100kHz, V _{OUT} = 2V _{pp}		-66		dBc
THD	Total Harmonic Distortion	100kHz, V _{OUT} = 2V _{pp}		65		dB
e _n	Input Voltage Noise	>10kHz		21		nV/√Hz
XTALK	Crosstalk	100kHz, $V_{OUT} = 0.2V_{pp}$		98		dB
DC Perform	ance	0.0				
V _{IO}	Input Offset Voltage	70 0	-5	-1.5	5	mV
$d_{VIO}$	Average Drift	- 10 9/1		20		μV/°C
$I_{B}$	Input Bias Current	12 12 Cx	-1.3	0.37	1.3	μA
$dl_B$	Average Drift	0, 00		1		nA/°C
I _{OS}	Input Offset Current	00 1/2		7	130	nA
PSRR	Power Supply Rejection Ratio	DC O	56	60		dB
$A_{OL}$	Open Loop Gain	V _{OUT} = V _S / 2	56	62		dB
I _S	Supply Current	per channel		208	260	μA
Input Chara	cteristics	(C) 12 (C)				
R _{IN}	Input Resistance	Non-inverting		>10		ΜΩ
C _{IN}	Input Capacitance		7	1.2		pF
CMIR	Common Mode Input Range	N. 80%	, Mic	-0.3 to 3.8		V
CMRR	Common Mode Rejection Ratio	DC, $V_{CM} = 0V$ to $V_S - 1.5V$	65	95		dB
Output Cha	racteristics	·	0			
V	Outrout Valtage Outre	$R_L = 2k\Omega$ to $V_S / 2$	0.2 to 4.7	0.1 to 4.8		V
V _{OUT}	Output Voltage Swing	$R_L = 10k\Omega$ to $V_S/2$		0.08 to 4.88		V
I _{OUT}	Output Current			±8.5		mA
I _{SC}	Short Circuit Current			±13		mA

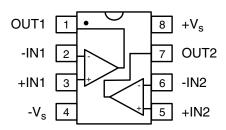
# **XR1009 Pin Configurations** TSOT-5




# **XR1009 Pin Assignments**

### TSOT-5

Pin No.	Pin Name	Description
1	OUT	Output
2	-V _S	Negative supply
3	+IN	Positive input
4	-IN	Negative input
5	+V _S	Positive supply


## **SOIC-8**

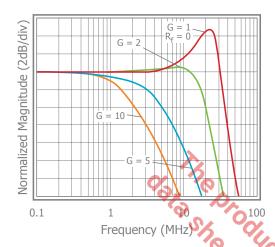


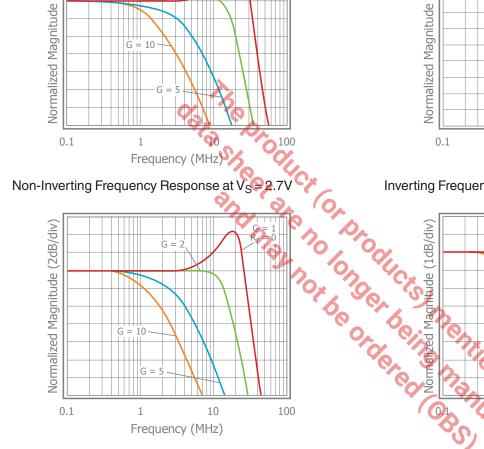
### SOIC-8

<b>&gt;</b> .	SOIC-8		
or ho	Pin No.	Pin Name	Description
8 NC	1	NC	No Connect
	2	-IN	Negative input
7 +V _s	3	+IN	Positive input
C C C C C C C C C C C C C C C C C C C	4	-V _S	Negative supply
6 OUT	5	NC	No Connect
5 NC	6	OUT	Output
	0	+V _S	Positive supply
<b>*</b>	8 4	NC	No Connect
	60 or 6	in then.	
ation	XR2009 P	in Assignme	ents
	SOIC-8 / MS		ed.
	Pin No.	Pin Name	Description

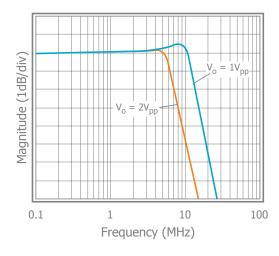
# **XR2009 Pin Configuration** SOIC-8 / MSOP-8



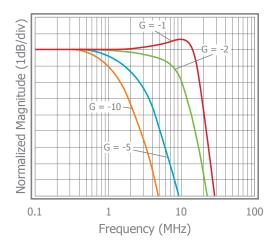

# XR2009 Pin Assignments


Pin No.	Pin Name	Description	
1	OUT	Output, channel 1	
2	-IN1	Negative input, channel 1	
3	+IN1	Positive input, channel 1	
4	-V _S	Negative supply	
5	+IN2	Positive input, channel 2	
6	-IN2	Negative input, channel 2	
7	OUT2	Output, channel 2	
8	+V _S	Positive supply	

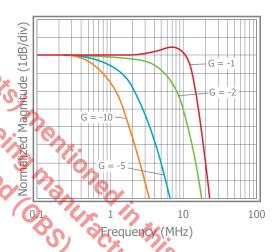
# **Typical Performance Characteristics**


 $T_A = 25^{\circ}C$ ,  $V_S = +5V$ ,  $R_f = R_g = 2.5k\Omega$ ,  $R_L = 2k\Omega$  to  $V_S/2$ ; G = 2; unless otherwise noted.

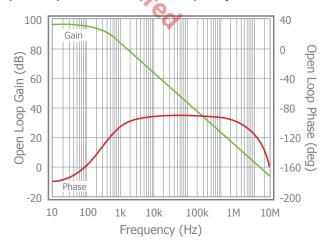
Non-Inverting Frequency Response at  $V_S = 5V$ 







Frequency Response vs. VOUT




Inverting Frequency Response at  $V_S = 5V$ 

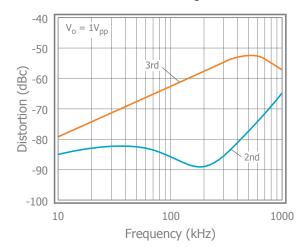


Inverting Frequency Response at V_S = 2.7V

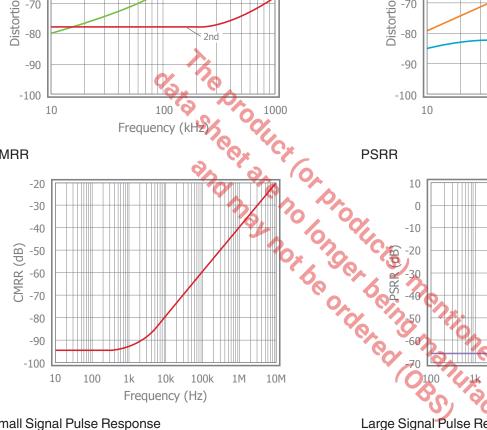


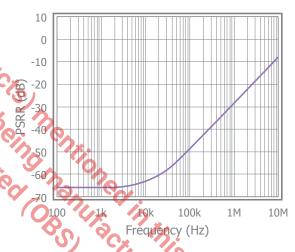

Open Loop Gain & Phase vs. Frequency



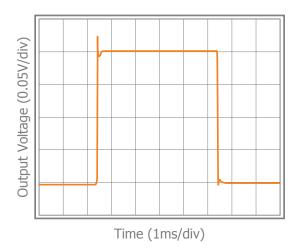

# **Typical Performance Characteristics**

 $T_A = 25^{\circ}C$ ,  $V_S = +5V$ ,  $R_f = R_g = 2.5k\Omega$ ,  $R_L = 2k\Omega$  to  $V_S/2$ ; G = 2; unless otherwise noted.

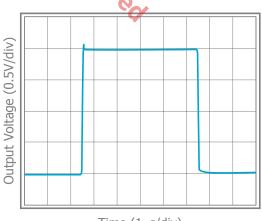

### 2nd & 3rd Harmonic Distortion at $V_S = 5V$




## 2nd & 3rd Harmonic Distortion at $V_S = 2.7V$



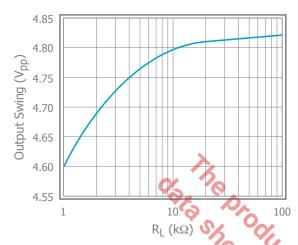

### **CMRR**



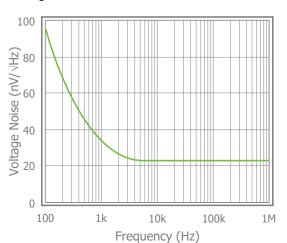



### Small Signal Pulse Response




# Large Signal Pulse Response




# **Typical Performance Characteristics**

 $T_A = 25^{\circ}C$ ,  $V_S = +5V$ ,  $R_f = R_a = 2.5k\Omega$ ,  $R_L = 2k\Omega$  to  $V_S/2$ ; G = 2; unless otherwise noted.

### Output Swing vs. RL



### Input Voltage Noise



RL (KΩ) Sheet of the products of the products

### **Application Information**

### **General Description**

The XR1009 and XR2009 are a single supply, general purpose, voltage-feedback amplifiers fabricated on a complementary bipolar process. The XR1009 offers 35MHz unity gain bandwidth, 27V/µs slew rate, and only 208µA supply current. It features a rail-to-rail output stage and is unity gain stable.

The design utilizes a patent pending topology that provides increased slew rate performance. The common mode input range extends to 300mV below ground and to 1.2V below Vs. Exceeding these values will not cause phase reversal. However, if the input voltage exceeds the rails by more than 0.5V, the input ESD devices will begin to conduct. The output will stay at the rail during this overdrive condition.

The design uses a Darlington output stage. The output stage is short circuit protected and offers "soft" saturation protection that improves recovery time.

Figures 1, 2, and 3 illustrate typical circuit configurations for non-inverting, inverting, and unity gain topologies for dual supply applications. They show the recommended bypass capacitor values and overall closed loop gain equations. Figure 4 shows the typical non-inverting gain circuit for single supply applications.

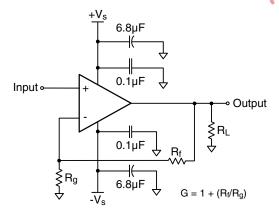



Figure 1: Typical Non-Inverting Gain Circuit

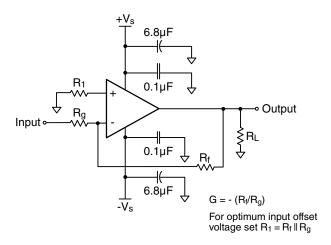
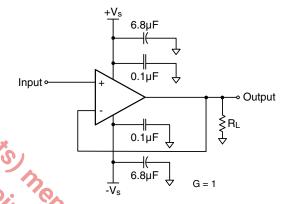




Figure 2: Typical Inverting Gain Circuit



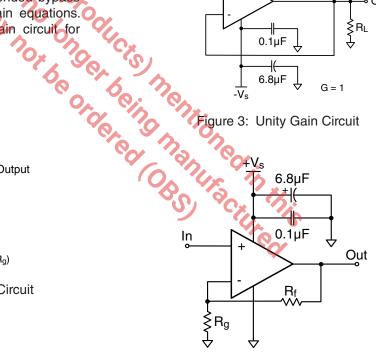



Figure 4: Single Supply Non-Inverting Gain Circuit

### **Power Dissipation**

Power dissipation should not be a factor when operating under the stated  $2k\Omega$  load condition. However, applications with low impedance, DC coupled loads should be analyzed to ensure that maximum allowed junction temperature is not exceeded. Guidelines listed below can be used to verify that the particular application will not cause the device to operate beyond it's intended operating range.

Maximum power levels are set by the absolute maximum junction rating of 150°C. To calculate the junction temperature, the package thermal resistance value Theta_{JA}  $(\theta, A)$  is used along with the total die power dissipation.

$$T_{Junction} = T_{Ambient} + (\theta_{JA} \times P_{D})$$

Where T_{Ambient} is the temperature of the working environment.

In order to determine P_D, the power dissipated in the load needs to be subtracted from the total power delivered by the supplies.

$$P_D = P_{supply} - P_{load}$$

Supply power is calculated by the standard power equation.

$$P_{\text{supply}} = V_{\text{supply}} \times I_{\text{RMSsupply}}$$
 $V_{\text{supply}} = V_{\text{S+}} - V_{\text{S-}}$ 

Power delivered to a purely resistive load is:

$$P_{load} = ((V_{load})_{RMS^2})/Rload_{eff}$$

The effective load resistor (Rload_{eff}) will need to include the effect of the feedback network. For instance,

Rload_{eff} in Figure 3 would be calculated as:

$$R_L \parallel (R_f + R_a)$$

These measurements are basic and are relatively easy to perform with standard lab equipment. For design purposes however, prior knowledge of actual signal levels and load impedance is needed to determine the dissipated power. Here,  $P_{\rm D}$  can be found from

$$P_D = P_{Ouiescent} + P_{Dynamic} - P_{load}$$

Quiescent power can be derived from the specified  $I_S$  values along with known supply voltage,  $V_{supply}$ . Load power can be calculated as above with the desired signal amplitudes using:

$$(V_{load})_{RMS} = V_{peak} / \sqrt{2}$$

$$(I_{load})_{RMS} = (V_{load})_{RMS} / Rload_{eff}$$

The dynamic power is focused primarily within the output stage driving the load. This value can be calculated as:

$$P_{Dynamic} = (V_{S+} - V_{load})_{RMS} \times (I_{load})_{RMS}$$

Assuming the load is referenced in the middle of the power rails or  $V_{\text{supply}}/2$ .

The XR1009 is short circuit protected. However, this may not guarantee that the maximum junction temperature (+150°C) is not exceeded under all conditions. Figure 5 shows the maximum safe power dissipation in the package vs. the ambient temperature for the packages available.

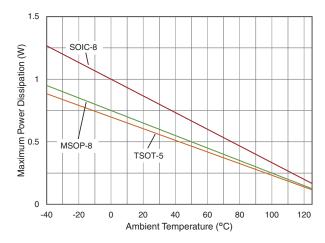



Figure 5. Maximum Power Derating

# **Driving Capacitive Loads**

Increased phase delay at the output due to capacitive loading can cause ringing, peaking in the frequency response, and possible unstable behavior. Use a series resistance, R_S, between the amplifier and the load to help improve stability and settling performance. Refer to Figure 6.

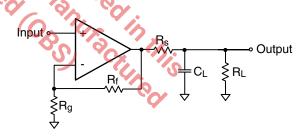



Figure 6. Addition of R_S for Driving Capacitive Loads

### **Overdrive Recovery**

For an amplifier, an overdrive condition occurs when the output and/or input ranges are exceeded. The recovery time varies based on whether the input or output is overdriven and by how much the ranges are exceeded. The XR1009, and XR2009 will typically recover in less than 20ns from an overdrive condition.

### **Layout Considerations**

General layout and supply bypassing play major roles in high frequency performance. Exar has evaluation boards to use as a guide for high frequency layout and as an aid in device testing and characterization. Follow the steps below as a basis for high frequency layout:

- Include 6.8µF and 0.1µF ceramic capacitors for power supply decoupling
- Place the 6.8µF capacitor within 0.75 inches of the power pin
- Place the 0.1µF capacitor within 0.1 inches of the power pin
- Remove the ground plane under and around the part, especially near the input and output pins to reduce parasitic capacitance
- Minimize all trace lengths to reduce series inductances

Refer to the evaluation board layouts below for more information.

### **Evaluation Board Information**

The following evaluation boards are available to aid in the testing and layout of these devices:

Evaluation Board #	Products
CEB002	XR1009 in TSOT
CEB003	XR1009 in SOIC
CEB006	XR2009 in SOIC
CEB010	XR2009 in MSOP

### **Evaluation Board Schematics**

Evaluation board schematics and layouts are shown in Figures 9-18 These evaluation boards are built for dual-supply operation. Follow these steps to use the board in a single-supply application:

- 1. Short -V_S to ground.
- 2. Use C3 and C4, if the  $-V_S$  pin of the amplifier is not directly connected to the ground plane.

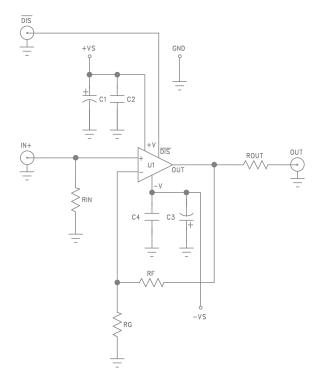



Figure 9. CEB002 & CEB003 Schematic

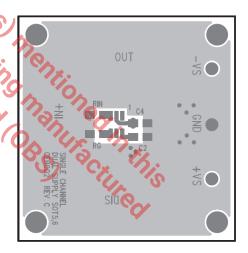



Figure 10. CEB002 Top View

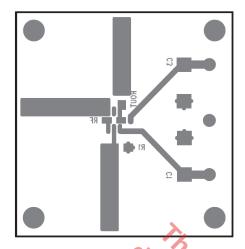



Figure 11. CEB002 Bottom View

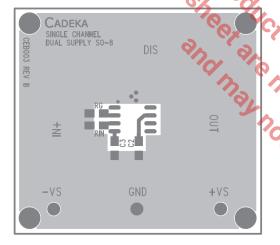



Figure 12. CEB003 Top View

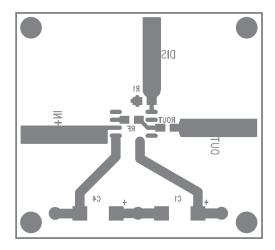



Figure 13. CEB003 Bottom View

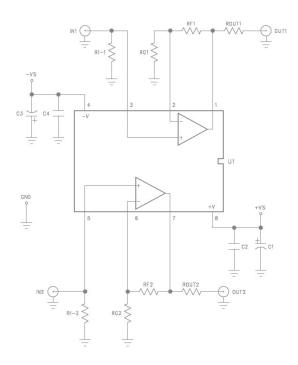



Figure 14. CEB006 & CEB010 Schematic

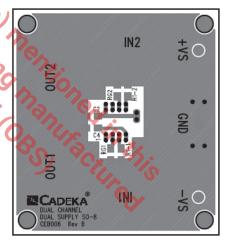



Figure 15. CEB006 Top View

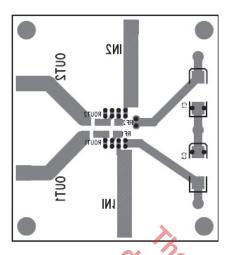



Figure 16. CEB006 Bottom View

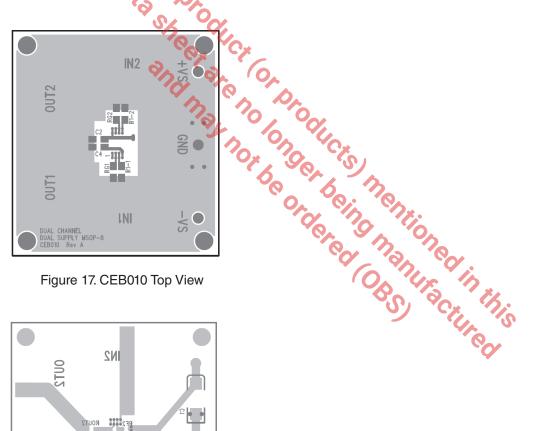



Figure 17. CEB010 Top View

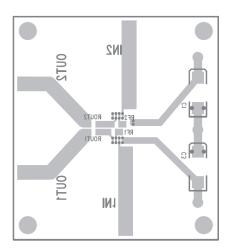
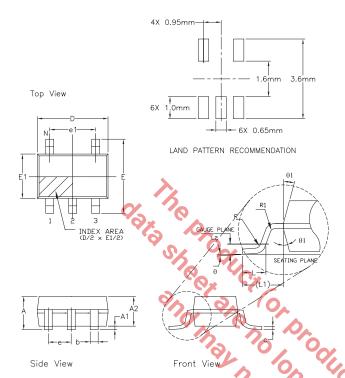
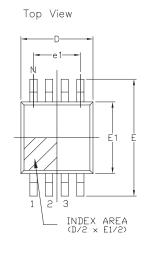
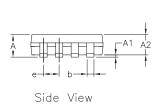
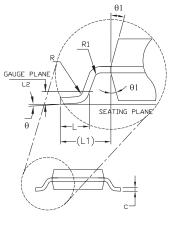




Figure 18. CEB010 Bottom View


## **Mechanical Dimensions**

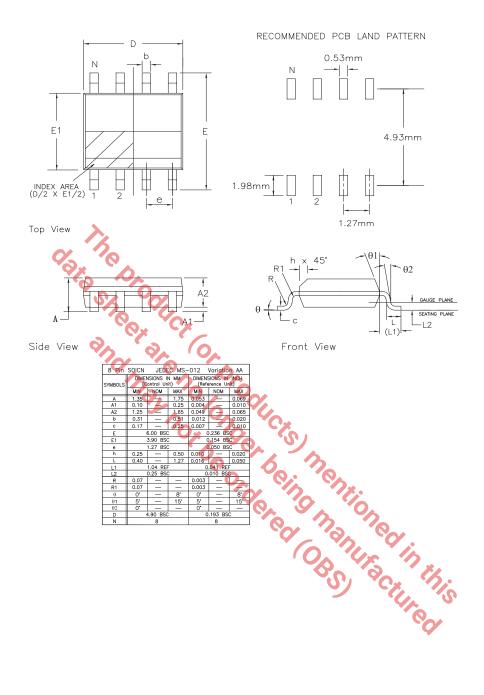

# **TSOT-5 Package**




5 Pin TSOT (OPTION 2)							
SYMBOLS	DIMENSION IN MM (Control Unit)			DIMENSION IN INCH (Reference Unit)			
	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.75	_	0.80	0.030	_	0.031	
A1	0.00	_	0.05	0.000	_	0.002	
A2	0.70	0.75	0.78	0.028	0.030	0.031	
ь	0.35	_	0.50	0.012	0.012 —		
С	0.10	_	0.20	0.003	_	0.008	
D	2.90 BSC			0.114 BSC			
E	2.80 BSC			0.110 BSC			
E1	1	.60 BS	SC .	0.063 BSC			
е	(	).95 BS	iC .	(	0.038 B	SC	
e1	1	.90 BS	SC .	0.075 BSC		SC	
L	0.37	0.45	0.60	0.012	0.018	0.024	
L1	(	0.60 RE	F	0	.024 RE	F	
L2	(	0.25 BS	SC .	0	.010 BS	C	
R	0.10	—	—	0.004	_	_	
R1	0.10	_	0.25	0.004	_	0.010	
θ	0,	4*	8*	0,	4.	8*	
θ1	4.	10°	12*	4*	10°	12*	
N	5				5		

## **MSOP-8 Package**










14 / 16

### **SOIC-8 Package**



# **Ordering Information**

Part Number	Package	Green	Operating Temperature Range	Packaging Quantity	Marking			
XR1009 Ordering Inform	XR1009 Ordering Information							
XR1009IST5X	TSOT-5	Yes	-40°C to +125°C	2.5k Tape & Reel	UC			
XR1009IST5MTR	TSOT-5	Yes	-40°C to +125°C	250 Tape & Reel	UC			
XR1009IST5EVB	Evaluation Board	N/A	N/A	N/A	N/A			
XR1009ISO8X	SOIC-8	Yes	-40°C to +125°C	2.5k Tape & Reel	XR1009			
XR1009ISO8MTR	SOIC-8	Yes	-40°C to +125°C	250 Tape & Reel	XR1009			
XR1009ISO8EVB	Evaluation Board	N/A	N/A	N/A	N/A			
XR2009 Ordering Inform	nation				·			
XR2009ISO8X	SOIC-8	Yes	-40°C to +125°C	2.5k Tape & Reel	XR2009			
XR2009ISO8MTR	SOIC-8	Yes	-40°C to +125°C	250 Tape & Reel	XR2009			
XR2009ISO8EVB	Evaluation Board	N/A	N/A	N/A	N/A			
XR2009IMP8X	MSOP-8	Yes	-40°C to +125°C	2.5k Tape & Reel	2009			
XR2009IMP8MTR	MSOP-8	Yes	-40°C to +125°C	250 Tape & Reel	2009			
XR2009IMP8EVB	Evaluation Board	N/A	N/A	N/A	N/A			
XR2009IMP8EVB Evaluation Board N/A N/A N/A N/A  Moisture sensitivity level for all parts is MSL-1.  Revision History								

# **Revision History**

Revision	Date	Description
1A	June 2014	Initial Release [ECN 1426-101 06/24/14]
1B	Sept 2014	Added XR1009 ESD, increased operating temperature range, updated package outline drawings, and removed Preliminary note on XR1009. [ECN 1436-03   09/04/14]
		OBS) Pacture
For Further Assistance:		

### For Further Assistance:

Email: CustomerSupport@exar.com or HPATechSupport@exar.com

Exar Technical Documentation: http://www.exar.com/techdoc/

**Exar Corporation Headquarters and Sales Offices** Tel.: +1 (510) 668-7000 48760 Kato Road Fremont, CA 94538 - USA Fax: +1 (510) 668-7001



### NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.