22V, 6A Synchronous Step-Down COT Power Module

Description

The XR79106 is part of a family of 22V synchronous step-down power modules combining the controller, drivers, inductor, passive components and MOSFETs in a single package for point-of-load supplies. This module requires very few external components, leading to ease of design and fast time to market. The XR79106 has a load current rating of 6 A . A wide 4.5 V to 22 V input voltage range allows for single supply operation from industry standard $5 \mathrm{~V}, 12 \mathrm{~V}$ and 19.6V rails.

With a proprietary emulated current mode Constant On-Time (COT) control scheme, the XR79106 provides extremely fast line and load transient response using ceramic output capacitors. It requires no loop compensation, simplifying circuit implementation and reducing overall component count. The control loop also provides 0.2% load and 0.2% line regulation and maintains constant operating frequency. A selectable power saving mode allows the user to operate in Discontinuous Current Mode (DCM) at light current loads, significantly increasing the converter efficiency.

A host of protection features, including overcurrent, over temperature, short-circuit and UVLO, helps achieve safe operation under abnormal operating conditions.
The XR79106 is available in a RoHS-compliant, green / halogen-free space-saving $8 \mathrm{~mm} \times 8 \mathrm{~mm} \times 4 \mathrm{~mm}$ GQFN package.

Typical Application

Figure 1. Typical Application

FEATURES

- 6A step-down power module - 4.5 V to 22 V wide single input voltage
- $\geq 0.6 \mathrm{~V}$ adjustable output voltage
- Controller, drivers, inductor, passive components and MOSFETs integrated in one package
- Proprietary constant on-time control
- No loop compensation required
- Stable with ceramic output capacitors
- Programmable 100ns to1 μ s on-time
- Constant 600 kHz to 800 kHz frequency
- Selectable CCM or DCM / CCM operation
- Precision enable and power-good flag
- Programmable soft-start
- $8 \mathrm{~mm} \times 8 \mathrm{~mm} \times 4 \mathrm{~mm}$ GQFN package

APPLICATIONS

- FPGA, DSP and processor supplies
- Distributed power architecture
- Point-of-load converters
- Power supply modules
- Base stations
- Switches and routers
- Servers

Ordering Information - Back Page

Figure 2. Efficiency, $12 \mathrm{~V}_{\mathrm{IN}}$

Absolute Maximum Ratings

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. Exposure to any absolute maximum rating condition for extended periods may affect device reliability and lifetime.
V_{CC}... -0.3 V to 6.0 V
BST. -0.3 V to $31 \mathrm{~V}^{(1)}$

BST-SW -0.3V to 6V
SW, ILIM.. -1V to 30V ${ }^{(1)(2)}$
All other pins.. 0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Storage temperature................................... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction temperature... $150^{\circ} \mathrm{C}$
Power dissipation Internally limited
Lead temperature (soldering, 10 seconds)...... $260^{\circ} \mathrm{C}$ MSL3
ESD rating (HBM - human body model) 2 kV
ESD rating (CDM - charged device model) 750V

Operating Conditions

PV ${ }_{\text {IN }}$
. 3 V to 22 V
V_{IN}. .4 .5 V to 22 V
SW, ILIM -1 V to $22 \mathrm{~V}^{(1)(2)}$

PGOOD, V_{CC}, TON, SS, EN, FB.................. - 0.3 V to 5.5 V
Switching frequency 600 kHz to $800 \mathrm{kHz}{ }^{(3)}$
Junction temperature range (T_{J})................. $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Package power dissipation max at $25^{\circ} \mathrm{C}4 .4 \mathrm{~W}$
Package thermal resistance θ_{JA}.
$.23^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

1. No external voltage applied.
2. The SW pin's minimum DC range is -1 V , transient is -5 V for less than 50 ns .
3. Recommended frequency for optimum performance.

Electrical Characteristics

$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{BST}=\mathrm{V}_{\mathrm{CC}}, \mathrm{SW}=\mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{VCC}}=4.7 \mu \mathrm{~F}$, unless otherwise specified. Limits applying over the full operating temperature range are denoted by a \bullet.

Symbol	Parameter	Conditions	-	Min	Typ	Max	Units
Power Supply Characteristics							
$\mathrm{V}_{\text {IN }}$	Input voltage range	V_{CC} regulating or in dropout	-	4.5		22	V
		V_{CC} tied to $\mathrm{V}_{\text {IN }}$	-	4.5		5.5	V
$\mathrm{I}_{\mathrm{VIN}}$	$\mathrm{V}_{\text {IN }}$ supply current	Not switching, $\mathrm{V}_{\mathrm{FB}}=0.7 \mathrm{~V}$	-		0.7	2	mA
		$\mathrm{f}=500 \mathrm{kHz}, \mathrm{R}_{\mathrm{ON}}=61.9 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{FB}}=0.58 \mathrm{~V}$			9		mA
Ivcc	$\mathrm{V}_{\text {CC }}$ quiescent current	Not switching, V_{CC} tied to $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, $V_{F B}=0.7 \mathrm{~V}$	-		0.7	2	mA
Ioff	Shutdown current	Enable $=0 \mathrm{~V}, \mathrm{P}_{\mathrm{VIN}}$ tied to $\mathrm{V}_{\text {IN }}$			1		$\mu \mathrm{A}$
Enable and Undervoltage Lock-Out (UVLO)							
$\mathrm{V}_{\text {IH_EN_1 }}$	EN pin rising threshold		-	1.8	1.9	2.0	V
VEN_HYS_1	EN pin hysteresis				60		mV
$\mathrm{V}_{\text {IH_EN_2 }}$	EN pin rising threshold for DCM/CCM		-	2.8	3.0	3.1	V
VEN_HYS_2	EN pin hysteresis				110		mV
	$\mathrm{V}_{\text {CC }}$ UVLO start threshold	Rising edge	-	4.00	4.25	4.40	V
	V_{CC} UVLO hysteresis		-	150	200		mV

Electrical Characteristics (Continued)

$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=12 \mathrm{~V}, \mathrm{BST}=\mathrm{V}_{\mathrm{CC}}, \mathrm{SW}=\mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{VCC}}=4.7 \mu \mathrm{~F}$, unless otherwise specified. Limits applying over the full operating temperature range are denoted by a \bullet.

Symbol	Parameter	Conditions	-	Min	Typ	Max	Units
Reference Voltage							
$\mathrm{V}_{\text {REF }}$	Reference voltage	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ to $22 \mathrm{~V}, \mathrm{~V}_{\text {CC }}$ regulating or in dropout		0.597	0.600	0.603	V
		$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {CC }}$ tied to $\mathrm{V}_{\text {IN }}$		0.596	0.600	0.604	V
		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ to $22 \mathrm{~V}, \mathrm{~V}_{\text {CC }}$ regulating or in dropout	-	0.594	0.600	0.606	V
		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {CC }}$ tied to $\mathrm{V}_{\text {IN }}$	-	0.594	0.600	0.606	V
	DC load regulation	CCM operation, closed loop, lout $=0 \mathrm{~A}$ to 6 A , applies to any $\mathrm{C}_{\text {OUt }}$			± 0.2		\%
	DC line regulation	CCM operation, closed loop, $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ to 22 V , applies to any Cout			± 0.2		\%
Programmable Constant On-Time							
TON(MIN)	Minimum programmable on-time	$\mathrm{R}_{\text {ON }}=6.98 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}=22 \mathrm{~V}$			110		ns
Ton1	On-time 1	$\mathrm{R}_{\text {ON }}=6.98 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$	-	157	185	214	ns
	On-time 1 frequency	$\begin{aligned} & \mathrm{R}_{\text {ON }}=6.98 \mathrm{k} \Omega, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \\ & \mathrm{I}_{\text {OUT }}=6 \mathrm{~A} \end{aligned}$		540	620	730	kHz
Ton2	On-time 2	$\mathrm{R}_{\text {ON }}=16.2 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}=12 \mathrm{~V}$	-	345	400	450	ns
TOFF(MIN)	Minimum off-time		-		250	350	ns
Diode Emulation Mode							
	Zero crossing threshold	DC value measured during test			-2		mV
Soft-Start							
	SS charge current		-	-14	-10	-6	$\mu \mathrm{A}$
	SS discharge current	Fault present	-	1			mA
$\mathrm{V}_{\text {CC }}$ Linear Regulator							
	V_{CC} output voltage	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}$ to 22V, $\mathrm{I}_{\text {LOAD }}=0$ to 30 mA	-	4.8	5.0	5.2	V
		$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{ON}}=16.2 \mathrm{k} \Omega$, $\mathrm{f}_{\text {SW }}=670 \mathrm{kHz}$	-	4.3	4.4		V
Power Good Output							
	Power good threshold			-10	-7.5	-5	\%
	Power good hysteresis				2	4	\%
	Power good sink current			1			mA

Electrical Characteristics (Continued)

$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{BST}=\mathrm{V}_{\mathrm{CC}}, S W=\mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{VCC}}=4.7 \mu \mathrm{~F}$, unless otherwise specified. Limits applying over the full operating temperature range are denoted by a \bullet.

Symbol	Parameter	Conditions	-	Min	Typ	Max	Units
Protection: OCP, OTP, Short-Circuit							
	Hiccup timeout				110		ms
	ILIM / $\mathrm{R}_{\text {DS }}$			5.8	6.3	6.7	$\mu \mathrm{A} / \mathrm{m} \Omega$
	ILIM current temperature coefficient				0.4		\%/ ${ }^{\circ} \mathrm{C}$
	ILIM comparator offset		-	-8	0	8	mV
	Current limit blanking	GL rising > 1V			100		ns
	Thermal shutdown threshold	Rising temperature			150		${ }^{\circ} \mathrm{C}$
	Thermal hysteresis				15		${ }^{\circ} \mathrm{C}$
	Feedback pin short-circuit threshold	Percent of $\mathrm{V}_{\text {REF }}$, short circuit is active. After PGOOD is asserted	-	50	60	70	\%
Output Power Stage							
$\mathrm{R}_{\text {DSON }}$	High-side MOSFET	$\mathrm{I}_{\mathrm{DS}}=2 \mathrm{~A}$			22	28	$\mathrm{m} \Omega$
	Low-side MOSFET				8	10	$\mathrm{m} \Omega$
Iout	Maximum output current		-	6			A
L	Output inductance			0.8	1	1.2	$\mu \mathrm{H}$
$\mathrm{C}_{\text {IN }}$	Input capacitance				1		$\mu \mathrm{F}$
$\mathrm{C}_{\text {BST }}$	Bootstrap capacitance				0.1		$\mu \mathrm{F}$

Pin Configuration

Pin Functions

Pin Number	Pin Name	Type	Description
1	SS	A	Soft-start pin. Connect an external capacitor between SS and AGND to program the soft-start rate based on the $10 \mu \mathrm{~A}$ internal source current.
2	PGOOD	OD, O	Power-good output. This open-drain output is pulled low when $\mathrm{V}_{\text {OUT }}$ is outside the regulation.
3	FB	A	Feedback input to feedback comparator. Connect with a set of resistors to VOUT and AGND in order to program $\mathrm{V}_{\text {OUT }}$.
$\begin{aligned} & \text { 4,5,53,54, } \\ & \text { AGND Pad } \end{aligned}$	AGND	A	Analog ground. Control circuitry of the IC is referenced to this pin. Connect to PGND.
6	VIN	PWR	IC supply input. Provides power to the internal LDO. Connect to PVIN pins.
7	VCC	PWR	The output of LDO. Bypass with a $4.7 \mu \mathrm{~F}$ capacitor to AGND.
8	PGND	PWR	Controller low-side driver ground. Connect with a short trace to closest PGND pins or PGND pad.
$\begin{gathered} \text { 13-19, 39-43, } \\ \text { PGND Pad } \end{gathered}$	PGND	PWR	Ground of the power stage. Should be connected to the system's power ground plane.
$\begin{gathered} \text { 10-11, 21-23, } \\ \text { SW Pad } \end{gathered}$	SW	PWR	Switching node. It internally connects the source of the high-side FET, the drain of the low-side FET, the inductor and bootstrap capacitor. Use thermal vias and / or sufficient PCB land area in order to heatsink the low-side FET and the inductor. Note: If the spike voltage approaches the limit in Absolute Maximum Ratings, then use an RC snubber.
25-37, VOUT Pad	VOUT	PWR	Output of the power stage. Place the output filter capacitors as close as possible to these pins.
45-49, PVIN Pad	PVIN	PWR	Power stage input voltage. Place the input filter capacitors as close as possible to these pins.
51, BST Pad	BST	A	Controller high-side driver supply pin. It is internally connected to SW via a $0.1 \mu \mathrm{~F}$ bootstrap capacitor. Leave these pins floating.
52	ILIM	A	Overcurrent protection programming. Connect with a short trace to the SW pins.
55	EN/MODE	1	Precision enable pin. Pulling this pin above 1.9 V will turn the IC on and it will operate in forced CCM. If the voltage is raised above 3.0 V , then the IC will operate in DCM or CCM depending on load.
56	TON	A	Constant on-time programming pin. Connect with a resistor to AGND.
$\begin{gathered} 9,12,20,24 \\ 38,44,50 \\ \hline \end{gathered}$			Omitted pins.

NOTE:

$\mathrm{A}=$ Analog, $\mathrm{I}=$ Input, $\mathrm{O}=$ Output, $\mathrm{OD}=\mathrm{Open}$ Drain, $\mathrm{PWR}=$ Power.

Typical Performance Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=6 \mathrm{~A}, \mathrm{f}=600 \mathrm{kHz}$, unless otherwise specified. The schematic is shown in Figure 27.

Figure 3. Load Regulation

Figure 5. ton vs. Ron

Figure 7. Switching Frequency vs. Iout

Figure 4. Line Regulation

Figure 6. t_{ON} vs. $\mathrm{V}_{\mathrm{IN}}, \mathrm{R}_{\mathrm{ON}}=6.98 \mathrm{k} \Omega$

Figure 8. Switching Frequency vs. V_{IN}

Typical Performance Characteristics (Continued)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=6 \mathrm{~A}, \mathrm{f}=600 \mathrm{kHz}$, unless otherwise specified. The schematic is shown in Figure 27.

Figure 9. loce vs. R

Figure 11. t_{ON} vs. Temperature, $\mathrm{R}_{\mathrm{ON}}=6.98 \mathrm{k} \Omega$

Figure 13. Inductor Current Ripple vs. V

Figure 10. $\mathrm{V}_{\text {REF }}$ vs. Temperature

Figure 12. Inductance vs. Current

Typical Performance Characteristics (Continued)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=6 \mathrm{~A}, \mathrm{f}=600 \mathrm{kHz}$, unless otherwise specified. The schematic is shown in Figure 27.

Figure 14. Steady State CCM, $\mathrm{IOUT}=6 \mathrm{~A}$

Figure 16. Power Up, IOUT $=6 \mathrm{~A}$

Figure 18. Load Step, CCM, OA-3A-OA

Figure 15. Steady State DCM, IOUT $=0 \mathrm{~A}$

Figure 17. Power Up, $\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$

Figure 19. Load Step, DCM/CCM, 0.05A-3A-0.05A

Typical Performance Characteristics (Continued)

Efficiency and Package Thermal Derating
$T_{A}=25^{\circ} \mathrm{C}$, no airflow, $f=600 \mathrm{kHz}$, unless otherwise specified. The schematic is shown in Figure 27.

Figure 20. Efficiency, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$

Figure 22. Efficiency, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$

Figure 21. Maximum $\mathrm{T}_{\text {AMBIENT }}$ vs. IOUT,

$$
V_{I N}=5 \mathrm{~V}
$$

Figure 23. Maximum $\mathrm{T}_{\text {AMBIENT }}$ vs. I IOUT,

$$
V_{I N}=12 \mathrm{~V}
$$

Functional Block Diagram

Figure 24. Functional Block Diagram

Applications Information

Functional Description

XR79106 is a synchronous step-down, proprietary emulated current-mode Constant On-Time (COT) module. The on-time, which is programmed via $R_{O N}$, is inversely proportional to $\mathrm{V}_{\mathbb{I}}$ and maintains a nearly constant frequency. The emulated current-mode control is stable with ceramic output capacitors.
Each switching cycle begins with the GH signal turning on the high-side (switching) FET for a preprogrammed time. At the end of the on-time, the high-side FET is turned off and the low-side (synchronous) FET is turned on for a preset minimum time (250 ns nominal). This parameter is termed minimum off-time. After the minimum off-time, the voltage at the feedback pin FB is compared to an internal voltage ramp at the feedback comparator. When V_{FB} drops below the ramp voltage, the high-side FET is turned on and the cycle repeats. This voltage ramp constitutes an emulated current ramp and makes possible the use of ceramic capacitors, in addition to other capacitor types, for output filtering.

Enable / Mode Input (EN/MODE)

The EN/MODE pin accepts a tri-level signal that is used to control turn on and turn off. It also selects between two modes of operation: forced CCM and DCM / CCM. If EN /MODE is pulled below 1.8 V , the module shuts down. A voltage between 2.0 V and 2.8 V selects the forced CCM mode which will run the module in continuous conduction at all times. A voltage higher than 3.1 V selects the DCM / CCM mode, which will run the module in discontinuous conduction at light loads.

Selecting the Forced CCM Mode

In order to set the module to operate in forced CCM, a voltage between 2.0 V and 2.8 V must be applied to EN/MODE. This can be achieved with an external control signal that meets the above voltage requirement. Where an external control is not available, the EN/MODE can be derived from $\mathrm{V}_{\text {IN }}$. If $\mathrm{V}_{\text {IN }}$ is well regulated, use a resistor divider and set the voltage to 2.5 V . If $\mathrm{V}_{\text {IN }}$ varies over a wide range, the circuit shown in Figure 25 can be used to generate the required voltage. Note that at V_{IN} of 4.5 V and 22 V , the nominal Zener voltage is 3.8 V and 4.7 V respectively. Therefore for V_{IN} in the range of 4.5 V to 22 V , the circuit shown in Figure 25 will generate V_{EN} required for forced CCM.

Selecting the DCM / CCM Mode

In order to set the module operation to DCM / CCM, a voltage between 3.1 V and 5.5 V must be applied to the EN/MODE pin. If an external control signal is available, it can be directly connected to EN/MODE. In applications where an external control is not available, EN/MODE input can be derived from V_{IN}. If V_{IN} is well regulated, use a resistor divider and set the voltage to 4 V . If V_{IN} varies over a wide range, the circuit shown in Figure 26 can be used to generate the required voltage for DCM / CCM operation.

Forced CCM, wide $V_{\text {IN }}$ range

Figure 25. Selecting Forced CCM by Deriving EN/MODE from V_{IN}

Figure 26. Selecting DCM/CCM by Deriving EN/MODE from V_{IN}

Applications Information (Continued)

Programming the On-Time

The on-time ton is programmed via resistor R R_{ON} according to following equation:

$$
\mathrm{R}_{\mathrm{ON}}=\frac{\mathrm{V}_{\mathrm{IN}} \times\left[\mathrm{t} \mathrm{ON}-\left(2.5 \times 10^{-8}\right)\right]}{2.78 \times 10^{-10}}
$$

A graph of ton vs. Ron, using the above equation, is compared to typical test data in Figure 5. The graph shows that calculated data matches typical test data within 3%.
The ton corresponding to a particular set of operating conditions can be calculated based on empirical data from:

$$
\mathrm{t}_{\mathrm{ON}}=\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }} \times 1.06 \times \mathrm{f} \times \mathrm{Eff} .}
$$

Where:

- f is the desired switching frequency at nominal lout
- Eff. is the converter efficiency corresponding to nominal lout
Substituting for t_{ON} in the first equation we get:

$$
\mathrm{RON}_{\mathrm{ON}}=\frac{\left(\frac{\mathrm{V}_{\text {OUT }}}{1.06 \times \mathrm{f} \times \mathrm{Eff} .}\right)-\left[\left(2.5 \times 10^{-8}\right) \times \mathrm{V}_{\mathrm{IN}}\right]}{\left(2.78 \times 10^{-10}\right)}
$$

Now R_{ON} can be calculated in terms of operating conditions $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}, \mathrm{f}$ and Eff. using the above equation. At $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, $f=600 \mathrm{kHz}$, $\mathrm{I}_{\text {Out }}=6 \mathrm{~A}$ and using the efficiency numbers from Figure 22, we get the following R_{ON} :

$\mathrm{V}_{\text {OUT }}(\mathrm{V})$	Eff. (\%)	$\mathrm{f}(\mathrm{kHZ})$	$R_{\text {ON }}(\mathrm{k} \Omega)$
5.0	93	800	21.73
3.3	91	800	14.30
2.5	89	600	14.81
1.8	87	600	10.62
1.5	85	600	8.90
1.2	80	600	7.20
1.0		600	5.99

Overcurrent Protection (OCP)

If the load current exceeds the programmed overcurrent threshold locp for four consecutive switching cycles, the module enters the hiccup mode of operation. In hiccup mode, the MOSFET gates are turned off for 110 ms (hiccup timeout). Following the hiccup timeout, a soft-start is attempted. If OCP persists, hiccup timeout will repeat. The module will remain in hiccup mode until load current is reduced below the programmed locp. In order to program overcurrent protection, use the following equation:

$$
\text { RLIM }=\left[\frac{\left(\mathrm{I}_{\mathrm{OCP}}+(0.5 \times \Delta \mathrm{I} \mathrm{~L})\right)}{\left(\frac{\mathrm{ILIM}}{\mathrm{RDS}}\right)}\right]+0.16 \mathrm{k} \Omega
$$

Where:

- $\mathrm{R}_{\text {LIM }}$ is resistor value in $\mathrm{k} \Omega$ for programming loCP
- locp is the overcurrent value to be programmed
- ΔI_{L} is the peak-to-peak inductor current ripple
- $I_{\text {LIM }} / R_{D S}=5.8 \mu \mathrm{~A} / \mathrm{m} \Omega$ is the minimum value of the parameter specified in the tabulated data
- $0.16 \mathrm{k} \Omega$ accounts for OCP comparator offset

The above equation is for worst-case analysis and safeguards against premature OCP. Typical value of locp, for a given R $\mathrm{R}_{\text {LIM }}$, will be higher than that predicted by the above equation. A graph of calculated locp vs. $\mathrm{R}_{\mathrm{LIM}}$ is compared to typical locp in Figure 9.

Short-Circuit Protection (SCP)

If the output voltage drops below 60% of its programmed value, the module will enter hiccup mode. Hiccup will persist until short-circuit is removed. SCP circuit becomes active after PGOOD asserts high.

Over Temperature Protection (OTP)

OTP triggers at a nominal controller temperature of $150^{\circ} \mathrm{C}$. The gates of the switching FET and synchronous FET are turned off. When controller temperature cools down to $135^{\circ} \mathrm{C}$, soft-start is initiated and operation resumes.

Applications Information (Continued)

Programming the Output Voltage

Use an external voltage divider as shown in Figure 27 to program the output voltage $\mathrm{V}_{\text {OUT }}$.

$$
R_{F B 1}=R_{F B 2} \times\left(\frac{V_{0 U T}}{0.6 \mathrm{~V}}-1\right)
$$

Where $R_{\text {FB2 }}$ has a nominal value of $2 k \Omega$.

Programming the Soft-Start

Place a capacitor $\mathrm{C}_{S S}$ between the SS and AGND pins to program the soft-start. In order to program a soft-start time of t_{SS}, calculate the required capacitance $\mathrm{C}_{S S}$ from the following equation:

$$
\mathrm{CSS}=\mathrm{tSS} \times \frac{10 \mu \mathrm{~A}}{0.6 \mathrm{~V}}
$$

Feed-Forward Capacitor (CFF)

The feed-forward capacitor C_{FF} is used to set the necessary phase margin when using ceramic output capacitors. Calculate C_{FF} from the following equation:

$$
\mathrm{C}_{\mathrm{FF}}=\frac{1}{2 \times \pi \times \mathrm{R}_{\mathrm{FB} 1} \times 5 \times \mathrm{fLC}}
$$

Where $f_{\text {LC }}$, the output filter double-pole frequency is calculated from:

$$
\mathrm{fLC}=\frac{1}{2 \times \pi \times \sqrt{\mathrm{LxCOUT}}}
$$

You must use the manufacturer's DC derating curves to determine the effective capacitance corresponding to $\mathrm{V}_{\text {OUT }}$. A load step test and / or a loop frequency response test should be performed, and if necessary $C_{\text {FF }}$ can be adjusted in order to get a critically damped transient load response.
In certain conditions, an alternate compensation scheme may need to be employed using ripple injection from the inductor. Those components; RR, CR, and CAC are shown in Figure 27. An application note is being developed to provide more information about this compensation scheme.

Feed-Forward Resistor (R_{FF})
$R_{F F}$, in conjunction with $C_{F F}$, functions similar to a high frequency pole and adds gain margin to the frequency response. Calculate $R_{\text {FF }}$ from:

$$
R_{F F}=\frac{1}{2 \times \pi \times f \times C_{F F}}
$$

Where f is the switching frequency.
If $R_{F F}>0.02 \times R_{F B 1}$, then calculate $R_{F F}$ value from $R_{F F}=0.02 \times R_{F B 1}$.

Maximum Allowable Voltage Ripple at FB Pin
Note that the steady-state voltage ripple at feedback pin FB ($\mathrm{V}_{\mathrm{FB}, \mathrm{RIPPLE}}$) must not exceed 50 mV in order for the module to function correctly. If $\mathrm{V}_{\mathrm{FB}, \mathrm{RIPPLE}}$ is larger than 50 mV , then Cout should be increased as necessary in order to keep the $\mathrm{V}_{\mathrm{FB}, \mathrm{RI} \text { IPPLE }}$ below 50 mV .

Applications Information (Continued)

Figure 27. Typical Application Circuit

Mechanical Dimensions

TOP VIEW
BOTTOM VIEW

Nute : ALL dimensians are in millimeters, angles are in degrees

* : ACTUAL LEAD CZUNT IS 49, HUWEVER PIN NUMBERS RANGE FRIM 1 TD 56.

TERMINAL DETAILS

Drawing No.: POD-00000155

Revision: B

Terminal and Pad Edge Details

TERMINAL AND PAD EDGE DETAILS

NUTE : ALL DIMENSIDNS ARE IN MILLIMETERS, ANGLES ARE IN DEGREES.

Drawing No.: POD-00000155
Revision: B

Recommended Land Pattern and Stencil

Typical Recommended Land Pattern

Ordering Information ${ }^{(1)}$

Part Number	Operating Temperature Range	Package	Packaging Method	Lead-Free
XR79106EL-F	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$	$8 \mathrm{~mm} \times 8 \mathrm{~mm} \times 4 \mathrm{~mm}$ GQFN package	Tray	Yes ${ }^{(2)}$
XR79106EVB	XR79106 evaluation board			

NOTES:

1. Refer to www.maxlinear.com/XR79106 for most up-to-date Ordering Information
2. Visit www.maxlinear.com for additional information on Environmental Rating.

Revision History

Revision	Date	Description
1B	$03 / 04 / 2016$	Initial Release
1C	$06 / 14 / 2018$	Update to MaxLinear logo. Update format, update Ordering Information format. Added Revision History.
1D	$11 / 04 / 2019$	Correct block diagram by changing the input gate that connects to the Hiccup Mode block from an AND gate to an OR gate and spacing the inverting latch output from the Short-Circuit Detection op amp output connection.
2A	$12 / 09 / 2019$	Update POD's Mechanical Dimensions and Recommended Land Pattern and Stencil. Update Pin Configuration, Pin Functions and Typical Application Circuit. Correct ESD rating for CDM model. Changed adsolute max and pin description for SW pin.
2C	$03 / 12 / 2020$	Clarify lead count versus pin numbering in Mechanical Dimensions.

Corporate Headquarters:

5966 La Place Court
Suite 100
Carlsbad, CA 92008
Tel.:+1 (760) 692-0711
Fax: +1 (760) 444-8598
www.maxlinear.com

Abstract

 mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc. risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances. license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property. © 2016-2020 MaxLinear, Inc. All rights reserved

