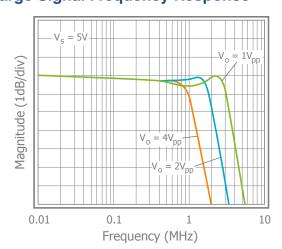


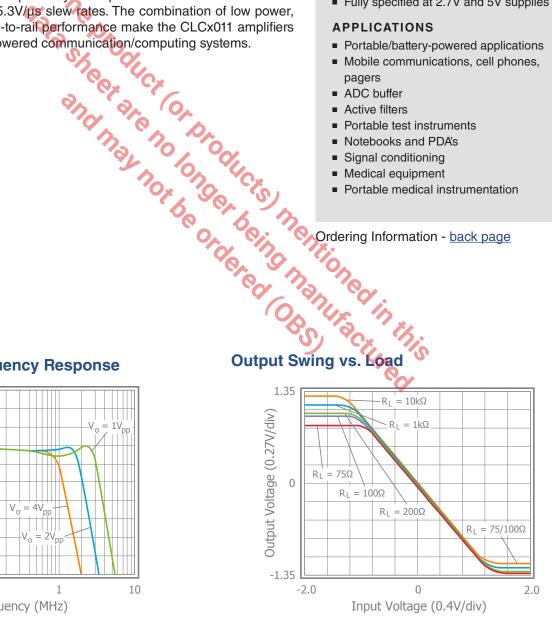
CLC2011, CLC4011 Low Power, Low Cost, Rail-to-Rail I/O Amplifiers

General Description

The CLC2011 (dual) and CLC4011 (quad) are ultra-low cost, low power, voltage feedback amplifiers. At 2.7V, the CLCx011 family uses only 136µA of supply current per amplifier and are designed to operate from a supply range of 2.5V to 5.5V (±1.25 to ±2.75). The input voltage range exceeds the negative and positive rails.

The CLCx011 family of amplifiers offer high bipolar performance at a low CMOS prices. They offer superior dynamic performance with 4.9MHz small signal bandwidths and 5.3V/us slew rates. The combination of low power, high bandwidth, and rail-to-rail performance make the CLCx011 amplifiers well suited for battery-powered communication/computing systems.


FEATURES


- 136µA supply current
- 4.9MHz bandwidth
- Output swings to within 20mV of either rail
- Input voltage range exceeds the rail by >250mV
- 5.3V/µs slew rate
- 21nV/√Hz input voltage noise
- ±35mA linear output current
- Fully specified at 2.7V and 5V supplies

APPLICATIONS

- Portable/battery-powered applications
- Mobile communications, cell phones,

Large Signal Frequency Response

Absolute Maximum Ratings

Stresses beyond the limits listed below may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

V _S	
V _{IN}	$-V_{S} - 0.5V$ to $+V_{S} + 0.5V$
Continuous Output Current	40mA to +40mA

Operating Conditions

Supply Voltage Range	2.5 to 5.5V
Operating Temperature Range	40°C to 125°C
Junction Temperature	150°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10s)	260°C

Package Thermal Resistance

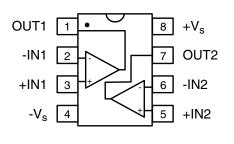
θ _{JA} (SOIC-8)	150°C/W
θ _{JA} (MSOP-8)	200°C/W
θ _{JA} (SOIC-14)	90°C/W
θ _{JA} (TSSOP-14)	100°C/W
Package thermal resistance (θ_{JA}), JEDEC s test boards, still air.	tandard, multi-layer

CLC2011, CLC4011 (HBM)2kV ESD Rating for HBM (Human Body Model).

data sheet ot or products and may no products the order of the order o

Electrical Characteristics at +2.7V

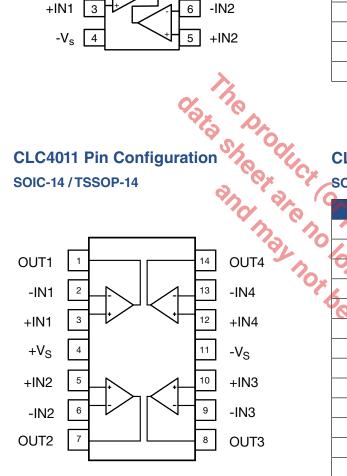
 T_A = 25°C, V_S = +2.7V, R_f = R_g = 5k $\Omega,~R_L$ = 10k Ω to $V_S/2;~G$ = 2; unless otherwise noted.


Symbol	Parameter	Conditions	Min	Тур	Max	Units
Frequency [Domain Response					
UGBW _{SS}	Unity Gain -3dB Bandwidth	$G = +1, V_{OUT} = 0.02V_{pp}$		4.9		MHz
BW _{SS}	-3dB Bandwidth	$G = +2, V_{OUT} = 0.2V_{pp}$		3.2		MHz
BW _{LS}	Large Signal Bandwidth	$G = +2, V_{OUT} = 2V_{pp}$		1.4		MHz
GBWP	Gain Bandwidth Product	$G = +11, V_{OUT} = 0.2V_{pp}$		2.5		MHz
Time Doma	in Response					
t _R , t _F	Rise and Fall Time	V _{OUT} = 1V step; (10% to 90%)		163		ns
ts	Settling Time to 0.1%	V _{OUT} = 1V step		500		ns
OS	Overshoot	V _{OUT} = 1V step		<1		%
SR	Slew Rate	1V step		5.3		V/µs
Distortion/N	oise Response					
HD2	2nd Harmonic Distortion	10kHz, V _{OUT} = 1 V _{pp}		-72		dBc
HD3	3rd Harmonic Distortion	10kHz, V _{OUT} = 1 V _{pp}		-72		dBc
THD	Total Harmonic Distortion	10kHz, V _{OUT} = 1V _{pp}		0.03		%
e _n	Input Voltage Noise	>10kHz		21		nV/√Hz
V	Creastelly	Channel to Channel, V _{OUT} = 2V _{pp} , f = 10kHz		82		dB
X _{TALK} Crosstalk		Channel to Channel, V _{OUT} = 2V _{pp} , f = 50kHz		74		dB
DC Perform	ance	70 0				
V _{IO}	Input Offset Voltage			0.5		mV
d _{VIO}	Average Drift	10 h C*		5		μV/°C
I _B	Input Bias Current			90		nA
dl _B	Average Drift			32		pA/°C
PSRR	Power Supply Rejection Ratio	DC O	55	83		dB
A _{OL}	Open Loop Gain	$V_{OUT} = V_S / 2$		90		dB
I _S	Supply Current	per channel		136		μA
Input Chara	cteristics					
R _{IN}	Input Resistance	Non-inverting		12		ΜΩ
C _{IN}	Input Capacitance		2.	2		pF
CMIR	Common Mode Input Range	5° (2°		-0.25 to 2.95		V
CMRR	Common Mode Rejection Ratio	DC		81		dB
Output Cha	racteristics		V.			
		$R_L = 10 k\Omega$ to $V_S / 2$		0.02 to 2.68		V
V _{OUT}	Output Voltage Swing	$R_L = 1 k\Omega$ to $V_S / 2$		0.05 to 2.63		V
		$R_L = 200\Omega$ to $V_S / 2$		0.11 to 2.52		V
I _{OUT}	Output Current			±30		mA

Electrical Characteristics at +5V

 T_A = 25°C, V_S = +5V, R_f = R_g = 5k Ω , R_L = 10k Ω to $V_S/2;$ G = 2; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Frequency [Domain Response					
UGBW _{SS}	Unity Gain -3dB Bandwidth	$G = +1, V_{OUT} = 0.02V_{pp}$		4.3		MHz
BW _{SS}	-3dB Bandwidth	$G = +2, V_{OUT} = 0.2V_{pp}$		3.0		MHz
BW _{LS}	Large Signal Bandwidth	$G = +2, V_{OUT} = 2V_{pp}$		2.3		MHz
GBWP	Gain Bandwidth Product	$G = +11, V_{OUT} = 0.2V_{pp}$		2.5		MHz
Time Doma	in Response					•
t _R , t _F	Rise and Fall Time	V _{OUT} = 1V step; (10% to 90%)		110		ns
t _S	Settling Time to 0.1%	V _{OUT} = 2V step		470		ns
OS	Overshoot	V _{OUT} = 1V step		<1		%
SR	Slew Rate	2V step		9		V/µs
Distortion/N	loise Response					
HD2	2nd Harmonic Distortion	10kHz, V _{OUT} = 1 V _{pp}		-73		dBc
HD3	3rd Harmonic Distortion	10kHz, V _{OUT} = 1V _{pp}		-75		dBc
THD	Total Harmonic Distortion	10kHz, V _{OUT} = 1 V _{pp}		0.03		%
en	Input Voltage Noise	>10kHz		22		nV/√H
v	Crosstalk	Channel to Channel, V _{OUT} = 2V _{pp} , f = 10kHz		82		dB
X _{TALK} Crosstalk		Channel to Channel, V _{OUT} = 2V _{pp} , f = 50kHz		74		dB
DC Perform	ance					
V _{IO}	Input Offset Voltage		-8	1.5	8	mV
d _{VIO}	Average Drift	10 10 Cx		15		μV/°C
I _B	Input Bias Current			90	450	nA
dl _B	Average Drift			40		pA/°C
PSRR	Power Supply Rejection Ratio	DC	55	85		dB
A _{OL}	Open Loop Gain	$V_{OUT} = V_S / 2$		80		dB
I _S	Supply Current	per channel		160	235	μA
Input Chara	cteristics					
R _{IN}	Input Resistance	Non-inverting		12		ΜΩ
C _{IN}	Input Capacitance		2.	2		pF
CMIR	Common Mode Input Range	5° (2°		-0.25 to 5.25		V
CMRR	Common Mode Rejection Ratio	DC	58	80		dB
Output Cha	racteristics		V.			
		$R_L = 10k\Omega$ to $V_S / 2$	0.08 to 4.92	0.04 to 4.96		V
V _{OUT}	Output Voltage Swing	$R_L = 1k\Omega$ to $V_S / 2$		0.07 to 4.9		V
		R_L = 200 Ω to V_S / 2		0.14 to 4.67		V
I _{OUT}	Output Current			±35		mA


CLC2011 Pin Configurations SOIC-8 / MSOP-8

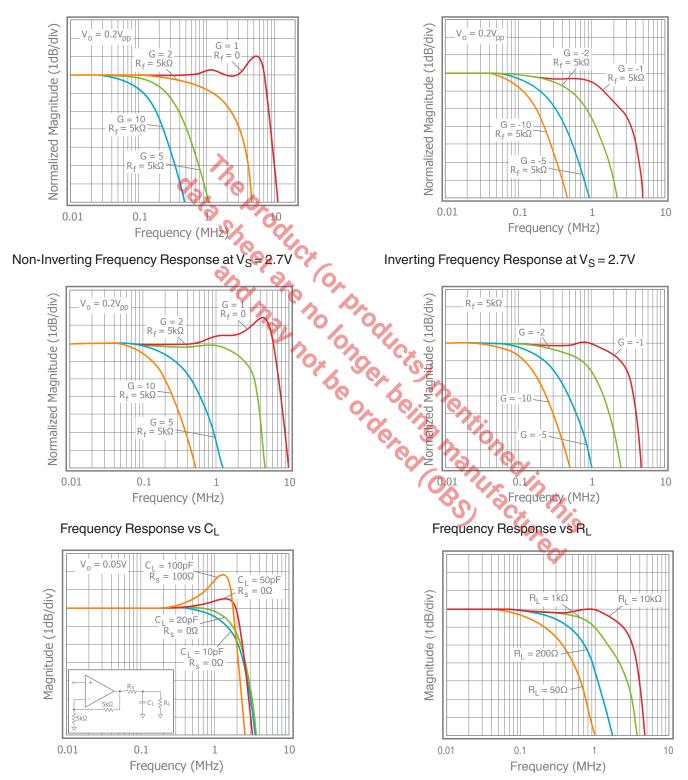
CLC2011 Pin Assignments

SOIC-8 / MSOP-8

Pin No.	Pin Name	Description
1	OUT1	Output, channel 1
2	-IN1	Negative input, channel 1
3	+IN1	Positive input, channel 1
4	-V _S	Negative supply
5	+IN2	Positive input, channel 2
6	-IN2	Negative input, channel 2
7	OUT2	Output, channel 2
8	+V _S	Positive supply

CLC4011 Pin Assignments

SOIC-14 / TSSOP-14

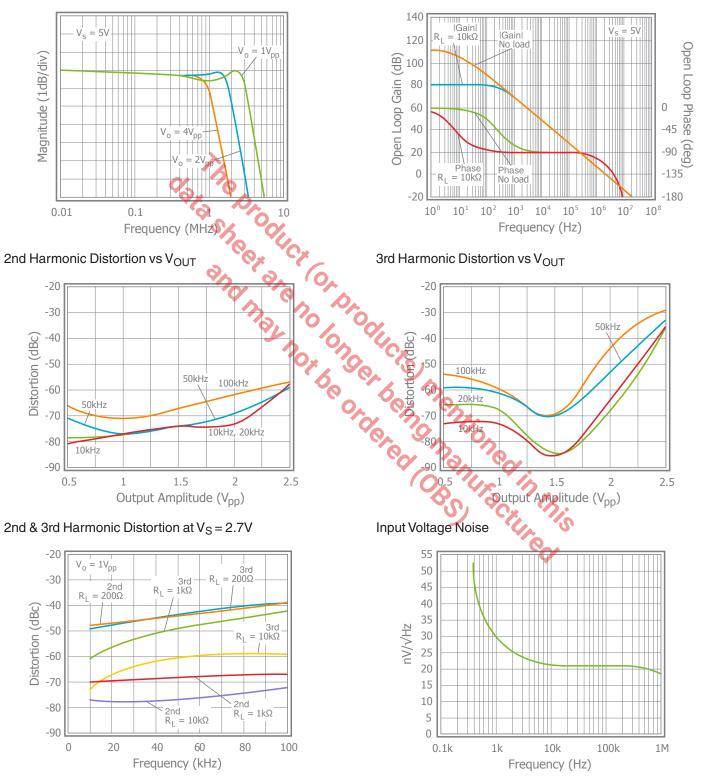

C	Pin No.	Pin Name	Description
		OUT1	Output, channel 1
	2	-IN1	Negative input, channel 1
	3	+IN1	Positive input, channel 1
	4	+V _S	Positive supply
	5	7IN2	Positive input, channel 2
	6	-IN2	Negative input, channel 2
	1	OUT2	Output, channel 2
	8	OUT3	Output, channel 3
	9	-IN3	Negative input, channel 3
	10	¢-iN3	Positive input, channel 3
	11	-Vs	Negative supply
	12	+IN4	Positive input, channel 4
	13	-IN4	Negative input, channel 4
	14	OUT4	Output, channel 4

Typical Performance Characteristics

 $T_A = 25^{\circ}C$, $V_S = +2.7V$, $R_f = R_g = 5k\Omega$, $R_L = 10k\Omega$ to $V_S/2$; G = 2; unless otherwise noted.

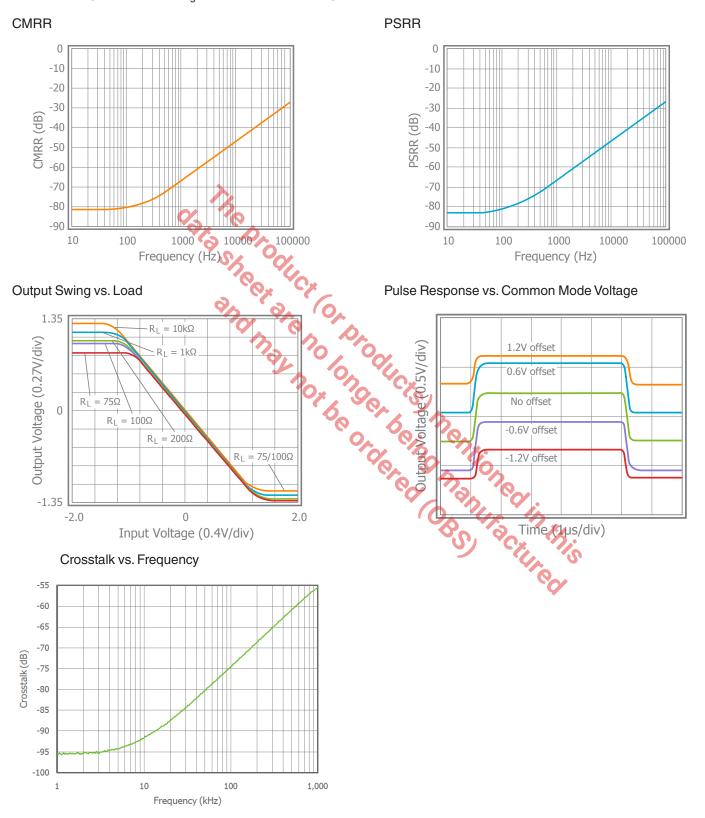
Non-Inverting Frequency Response at $V_S = 5V$

Inverting Frequency Response at $V_S = 5V$



Open Loop Gain & Phase vs. Frequency

Typical Performance Characteristics


 $T_A = 25^{\circ}C$, $V_S = +2.7V$, $R_f = R_g = 5k\Omega$, $R_L = 10k\Omega$ to $V_S/2$; G = 2; unless otherwise noted.

Frequency Response vs. V_{OUT}

Typical Performance Characteristics

 $T_A = 25^{\circ}C$, $V_S = +2.7V$, $R_f = R_g = 5k\Omega$, $R_L = 10k\Omega$ to $V_S/2$; G = 2; unless otherwise noted.

Application Information

General Description

The CLCx011 family of amplifiers are single supply, general purpose, voltage-feedback amplifiers. They are fabricated on a complimentary bipolar process, feature a rail-to-rail input and output, and are unity gain stable.

Basic Operation

Figures 1, 2, and 3 illustrate typical circuit configurations for non-inverting, inverting, and unity gain topologies for dual supply applications. They show the recommended bypass capacitor values and overall closed loop gain equations. Figure 4 shows the typical non-inverting gain circuit for single supply applications.

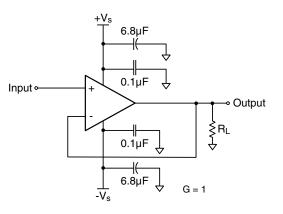


Figure 3: Unity Gain Circuit

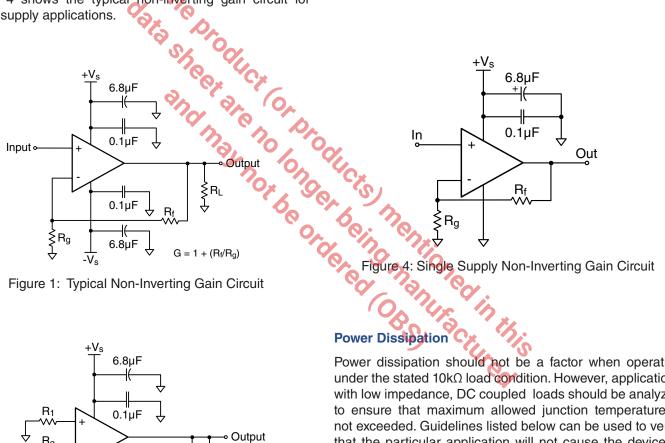


Figure 1: Typical Non-Inverting Gain Circuit

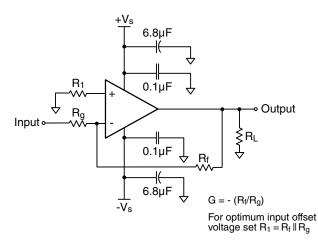


Figure 2: Typical Inverting Gain Circuit

Power dissipation should not be a factor when operating under the stated $10k\Omega$ load condition. However, applications with low impedance, DC coupled loads should be analyzed to ensure that maximum allowed junction temperature is not exceeded. Guidelines listed below can be used to verify that the particular application will not cause the device to operate beyond it's intended operating range.

Maximum power levels are set by the absolute maximum junction rating of 150°C. To calculate the junction temperature, the package thermal resistance value Theta_{JA} (θ_{IA}) is used along with the total die power dissipation.

$$T_{Junction} = T_{Ambient} + (\theta_{JA} \times P_D)$$

Where T_{Ambient} is the temperature of the working environment.

In order to determine P_D , the power dissipated in the load needs to be subtracted from the total power delivered by the supplies.

$$P_D = P_{supply} - P_{load}$$

Supply power is calculated by the standard power equation.

$$P_{supply} = V_{supply} \times I_{RMSsupply}$$
$$V_{supply} = V_{S+} - V_{S-}$$

Power delivered to a purely resistive load is:

$$P_{load} = ((V_{load})_{RMS^2})/Rload_{eff}$$

The effective load resistor (Rload_{eff}) will need to include the effect of the feedback network. For instance, Rload_{eff} in Figure 3 would be calculated as:

$$R_L \parallel (R_f + R_g)$$

These measurements are basic and are relatively easy to perform with standard lab equipment. For design purposes however, prior knowledge of actual signal levels and load impedance is needed to determine the dissipated power Here, P_D can be found from

$$P_D = P_{Quiescent} + P_{Dynamic} - P_{load}$$

Quiescent power can be derived from the specified I_S values along with known supply voltage, V_{supply} . Load power can be calculated as above with the desired signal amplitudes using:

$$(V_{load})_{RMS} = V_{peak} / \sqrt{2}$$

$$(I_{load})_{RMS} = (V_{load})_{RMS} / Rload_{eff}$$

The dynamic power is focused primarily within the output stage driving the load. This value can be calculated as:

$$P_{Dynamic} = (V_{S+} - V_{load})_{RMS} \times (I_{load})_{RMS}$$

Assuming the load is referenced in the middle of the power rails or $V_{\mbox{supply}}/2.$

The CLC2011 is short circuit protected. However, this may not guarantee that the maximum junction temperature (+150°C) is not exceeded under all conditions. Figure 5 shows the maximum safe power dissipation in the package vs. the ambient temperature for the packages available.

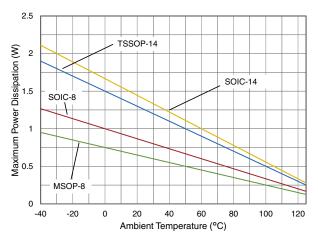
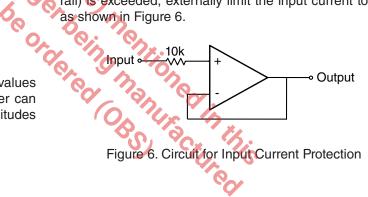



Figure 5. Maximum Power Derating

Input Common Mode Voltage

The common mode input range extends to 250mV below ground and to 250mV above Vs, in single supply operation. Exceeding these values will not cause phase reversal. However, if the input voltage exceeds the rails by more than 0.5V, the input ESD devices will begin to conduct. The output will stay at the rail during this overdrive condition. If the absolute maximum input voltage (700mV beyond either rail) is exceeded, externally limit the input current to \pm 5mA as shown in Figure 6.

Driving Capacitive Loads

Increased phase delay at the output due to capacitive loading can cause ringing, peaking in the frequency response, and possible unstable behavior. Use a series resistance, R_S , between the amplifier and the load to help improve stability and settling performance. Refer to Figure 7.

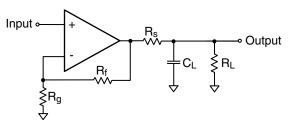


Figure 7. Addition of R_S for Driving Capacitive Loads

Table 1 provides the recommended R_S for various capacitive loads. The recommended R_S values result in approximately <1dB peaking in the frequency response. The Frequency Response vs. CL plot, on page 6, illustrates the response of the CLCx011.

C _L (pF)	R _S (Ω)	-3dB BW (MHz)
10pF	0	2.2
20pF	0	2.4
50pF	0	2.5
100pF	100	2

Table 1: Recommended Rs vs. Cl

For a given load capacitance, adjust R_S to optimize the tradeoff between settling time and bandwidth. In general, reducing R_S will increase bandwidth at the expense of at an of produce additional overshoot and ringing.

Overdrive Recovery

An overdrive condition is defined as the point when either one of the inputs or the output exceed their specified voltage range. Overdrive recovery is the time needed for the amplifier to return to its normal or linear operating point. The recovery time varies, based on whether the input or output is overdriven and by how much the range is exceeded. The CLCx011 will typically recover in less than 50ns from an overdrive condition. Figure 8 shows the CLC2011 in an overdriven condition.

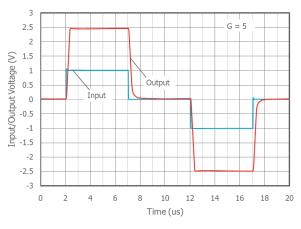


Figure 8: Overdrive Recovery

Layout Considerations

General layout and supply bypassing play major roles in high frequency performance. Exar has evaluation boards to use as a guide for high frequency layout and as an aid in device testing and characterization. Follow the steps below as a basis for high frequency layout:

- Include 6.8µF and 0.1µF ceramic capacitors for power supply decoupling
- Place the 6.8µF capacitor within 0.75 inches of the power pin
- Place the 0.1µF capacitor within 0.1 inches of the power pin
- Remove the ground plane under and around the part. especially near the input and output pins to reduce parasitic capacitance
- Minimize all trace lengths to reduce series inductances

Refer to the evaluation board layouts below for more information.

Evaluation Board Information

The following evaluation boards are available to aid in the testing and layout of these devices:

Products
CLC2011 in SOIC
CLC2011 in MSOP
CLC4011 in TSSOP
CLC4011 in SOIC

Evaluation Board Schematics

Evaluation board schematics and layouts are shown in Figures 9-16 These evaluation boards are built for dualsupply operation. Follow these steps to use the board in a single-supply application:

- 1. Short -V_S to ground.
- 2. Use C3 and C4, if the -V_S pin of the amplifier is not directly connected to the ground plane.

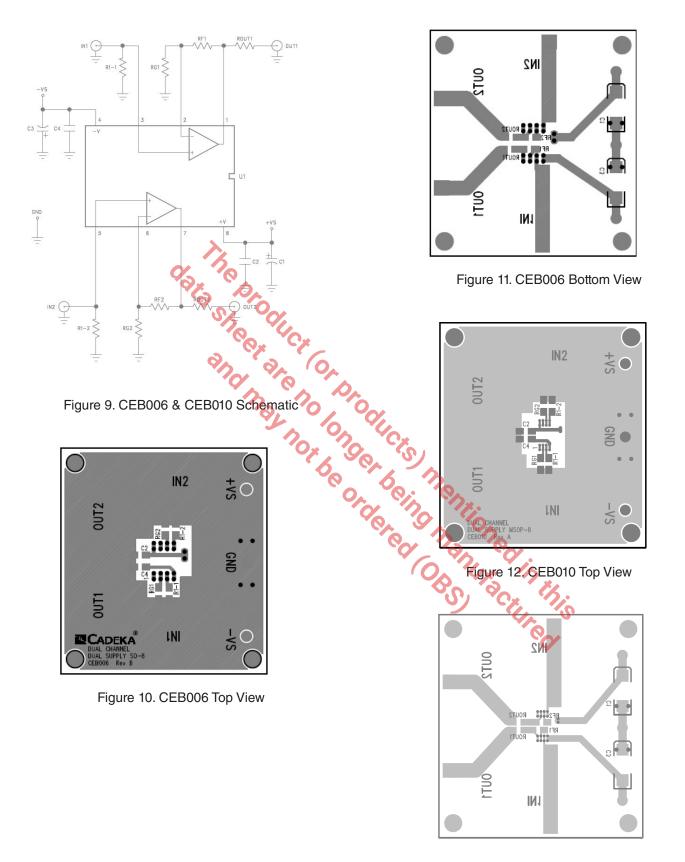


Figure 13. CEB010 Bottom View

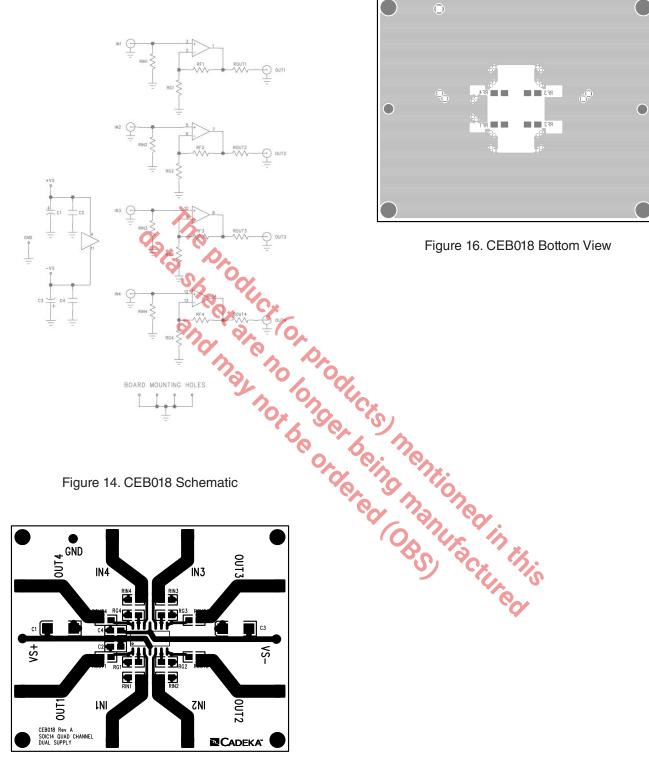
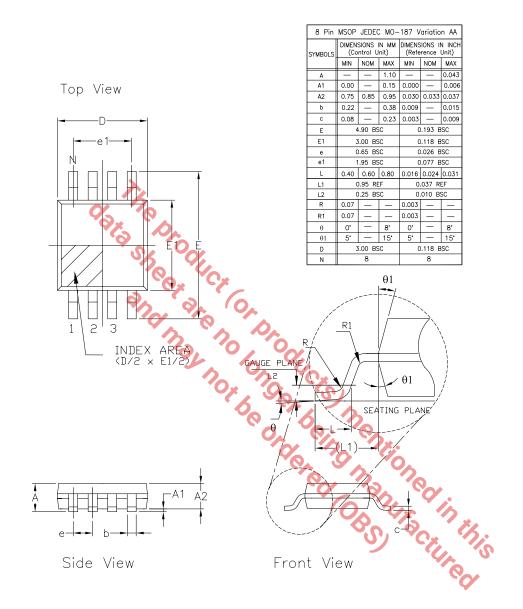



Figure 15. CEB018 Top View

Mechanical Dimensions MSOP-8

MAX

0.069

0.010

0.065

0.020

0.010

0.020

0.050

8'

15°

MAX

0.065

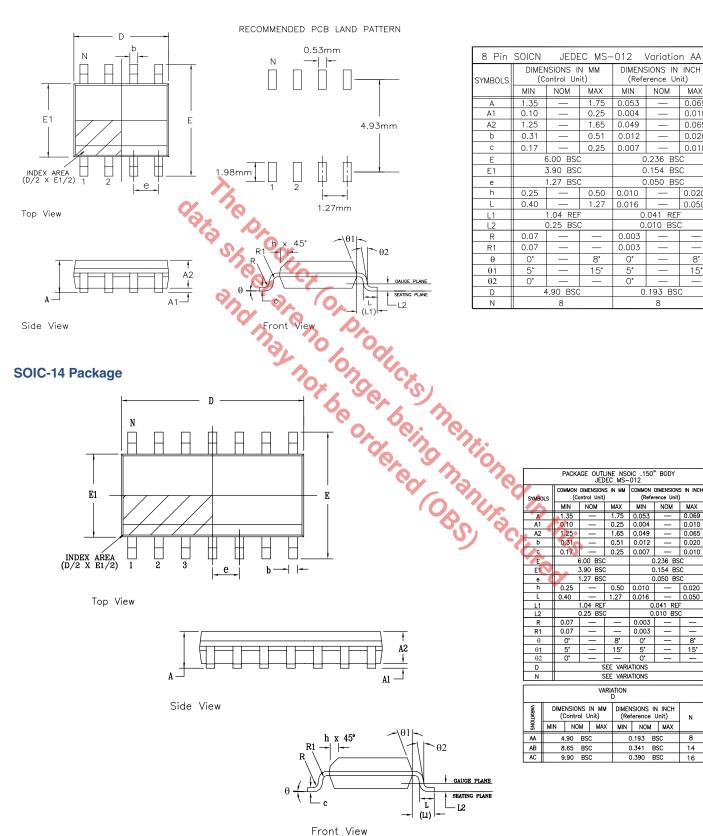
0.020

0.010

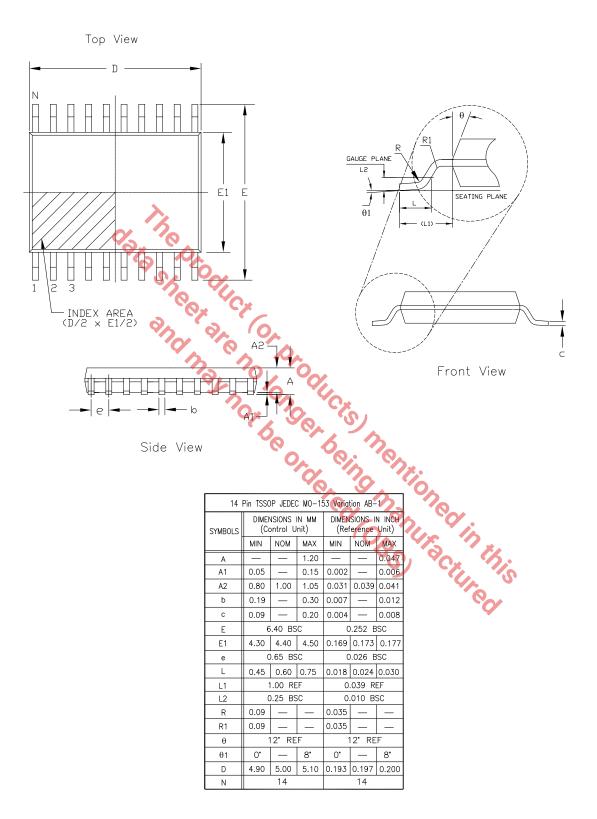
0.050

15

Ν


8

14


16

Mechanical Dimensions

SOIC-8 Package

TSSOP-14 Package

Ordering Information

Part Number Package		Green	Operating Temperature Range	Packaging	
CLC2011 Ordering Informati	on				
CLC2011ISO8X	SOIC-8	Yes	-40°C to +125°C	Tape & Reel	
CLC2011ISO8MTR	SOIC-8	Yes	-40°C to +125°C	Mini Tape & Reel	
CLC2011ISO8EVB	Evaluation Board	N/A	N/A	N/A	
CLC2011IMP8X	MSOP-8	Yes	-40°C to +125°C	Tape & Reel	
CLC2011IMP8MTR	MSOP-8	Yes	-40°C to +125°C	Mini Tape & Reel	
CLC2011IMP8EVB	Evaluation Board	N/A	N/A	N/A	
CLC4011 Ordering Informat	on				
CLC4011ISO14X	SOIC-14	Yes	-40°C to +125°C	Tape & Reel	
CLC4011ISO14MTR	SOIC-14	Yes	-40°C to +125°C	Mini Tape & Reel	
CLC4011ISO14EVB	Evaluation Board	N/A	N/A	N/A	
CLC4011ITP14X	TSSOP-14	Yes	-40°C to +125°C	Tape & Reel	
CLC4011ITP14MTR	TSSOP-14	Yes	-40°C to +125°C	Mini Tape & Reel	
CLC4011ITP14EVB	Evaluation Board	_ N/A	N/A	N/A	

Revision	Date	Description Office Contraction
1D (ECN 1504-01)	January 19, 2015	Reformat into Exar data sheet template. Updated PODs and thermal resistance numbers. Updated ordering information table to include MTR and EVB part numbers. Increased operating temperature to +125°C.
		ered manued i
		S ARCTUR THIS
For Further Assistance	:	°¢⁄

Email: CustomerSupport@exar.com or HPATechSupport@exar.com Exar Technical Documentation: http://www.exar.com/techdoc/

Exar Corporation Headquarters and Sales Offices

Tel.: +1 (510) 668-7000 48760 Kato Road Fremont, CA 94538 - USA Fax: +1 (510) 668-7001

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

EXAR

A New Direction in Mixed-Signal