GENERAL DESCRIPTION

The XRP6658 is a synchronous current mode PWM step down (buck) converter capable of delivering up to 1 Amp of current and optimized for portable battery-operated applications.

Based on a current mode 1.5MHz constant frequency PWM control scheme, the XRP6658 reduces the overall component count and solution footprint as well as provides a low output voltage ripple and excellent line and load regulation. It also implements a PFM mode to improve light load efficiency as well as a 100% duty cycle LDO mode. Output voltage is adjustable to as low as 0.6V with a better than 3% accuracy while a low quiescent current supports the most stringent battery operating conditions.

Built-in over temperature and under voltage lock-out protections insure safe operations under abnormal operating conditions.

The XRP6658 is offered in a RoHS compliant, “green”/halogen free 5-pin SOT23 package.

APPLICATIONS

• Portable Equipments
• Battery Operated Equipments
• Audio-Video Equipments
• Networking & Telecom Equipments

FEATURES

• Guaranteed 1A Output Current
 – Input Voltage: 2.5V to 5.5V
• 1.5MHz PWM Current Mode Control
 – PFM Mode Operations at Light Load
 – 100% Duty Cycle LDO Mode Operations
• Internal Compensation Network
• 30µA Quiescent Current
• Over Temperature & UVLO Protections
• RoHS Compliant “Green”/Halogen Free 5-Pin SOT23 Package

TYPICAL APPLICATION DIAGRAM

![XRP6658 Application Diagram](image)
ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Input Voltage V_{IN} -0.3V to 6.0V
EN, V_{FB} Voltages .. -0.3V to V_{IN}
SW Voltage -0.3V to ($V_{\text{IN}} + 0.3V$)
Storage Temperature -65°C to 150°C
Lead Temperature (Soldering, 10 sec) 260°C
ESD Rating (HBM - Human Body Model)............... 2kV
ESD Rating (CDM – Charged Device Model) 500V
Junction Temperature (Notes 1, 3) 150°C

OPERATING RATINGS

Input Voltage Range V_{IN}.........................2.5V to 5.5V
Ambient Temperature Range T_A -40°C to 85°C
Junction Temperature Range T_J....................-40°C to 125°C
Thermal Resistance.. θ_J (5 Pin SOT23).........................134.5°C/W
θ_K (5 Pin SOT23).................................81°C/W

ELECTRICAL SPECIFICATIONS

Specifications are for an Ambient Temperature of $T_A = 25°C$ only; limits applying over the full Operating Temperature range are denoted by a “•”. Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_A = 25°C$, and are provided for reference purposes only. Unless otherwise indicated, $V_{\text{IN}} = 3.6V$, $T_A = 25°C$.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range</td>
<td>2.5</td>
<td></td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Feedback Current</td>
<td>±100</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulated Feedback Voltage</td>
<td>0.588</td>
<td>0.600</td>
<td>0.612</td>
<td>V</td>
<td>$I_{\text{OUT}} = 100mA, V_{\text{IN}} < 3.0V$</td>
</tr>
<tr>
<td>Output Voltage Accuracy</td>
<td>-3</td>
<td></td>
<td>3 %</td>
<td></td>
<td>$V_{\text{IN}} = 2.5V$ to 3.0V</td>
</tr>
<tr>
<td>Reference Voltage Line Regulation</td>
<td>0.4</td>
<td>%/V</td>
<td></td>
<td></td>
<td>$V_{\text{IN}} = 3.0V$ to 5.5V</td>
</tr>
<tr>
<td>Reference Voltage Line Regulation</td>
<td>0.4</td>
<td>%/V</td>
<td></td>
<td></td>
<td>$V_{\text{IN}} = 3.0V$ to 5.5V</td>
</tr>
<tr>
<td>Output Voltage Line Regulation</td>
<td>0.4</td>
<td>%/V</td>
<td></td>
<td></td>
<td>$V_{\text{IN}} = 2.5V$ to 3.0V</td>
</tr>
<tr>
<td>Peak Inductor Current</td>
<td>1.5</td>
<td>2.3</td>
<td>A</td>
<td>µA</td>
<td>$V_{\text{FB}} = 0.5V$ or $V_{\text{OUT}} = 90%$</td>
</tr>
<tr>
<td>PFM Quiescent Current</td>
<td>30</td>
<td>µA</td>
<td></td>
<td></td>
<td>$V_{\text{FB}} = 0.65V$ or $V_{\text{OUT}} = 108%$</td>
</tr>
<tr>
<td>Shutdown</td>
<td>0.1</td>
<td>1</td>
<td>µA</td>
<td></td>
<td>$V_{\text{RUN}} = 0V$, $V_{\text{IN}} = 4.2V$</td>
</tr>
<tr>
<td>Oscillator Frequency</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
<td>MHz</td>
<td>$V_{\text{FB}} = 0.6V$ or $V_{\text{OUT}} = 100%$</td>
</tr>
<tr>
<td>Short-Circuit Oscillator Frequency</td>
<td>$f_{\text{TOSC}}/2$</td>
<td>kHz</td>
<td></td>
<td></td>
<td>$V_{\text{FB}} = 0V$ or $V_{\text{OUT}} = 0V$</td>
</tr>
<tr>
<td>R_{ON} of PMOS</td>
<td>0.22</td>
<td>Ω</td>
<td></td>
<td></td>
<td>$I_{\text{SW}} = 100mA$</td>
</tr>
<tr>
<td>R_{ON} of NMOS</td>
<td>0.17</td>
<td>Ω</td>
<td></td>
<td></td>
<td>$I_{\text{SW}} = -100mA$</td>
</tr>
<tr>
<td>Under Voltage Lock Out</td>
<td>2</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW Leakage</td>
<td>±1</td>
<td>µA</td>
<td></td>
<td></td>
<td>$V_{\text{RUN}} = 0V$, $V_{\text{SW}} = 0V$ or 5V, $V_{\text{IN}} = 5V$</td>
</tr>
<tr>
<td>Enable Threshold</td>
<td>1.2</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shutdown Threshold</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN Leakage Current</td>
<td>±1</td>
<td>µA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: T_J is a function of the ambient temperature T_A and power dissipation P_D: ($T_J = T_A + (P_D * \theta_J)$)
Note 2: Dynamic quiescent current is higher due to the gate charge being delivered at the switching frequency.
Note 3: This IC is built-in over-temperature protection to avoid damage from overload conditions.
Note 4: θ_J is measured in the natural convection at $T_A=25°C$ on a high effective thermal conductivity test board (2 layers, 2S0P) of JEDEC 51-5 thermal measurement standard.
Note 5: θ_K represents the resistance to the heat flows the chip to package top case.
BLOCK DIAGRAM

Fig. 2: XRP6658 Block Diagram

PIN ASSIGNMENT

Fig. 3: XRP6658 Pin Assignment
PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Name</th>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>1</td>
<td>Power Input Pin. Must be closely decoupled to GND pin with a 4.7μF or greater ceramic capacitor.</td>
</tr>
<tr>
<td>GND</td>
<td>2</td>
<td>Ground Signal</td>
</tr>
<tr>
<td>EN</td>
<td>3</td>
<td>Enable Pin. Minimum 1.2V to enable the device. Maximum 0.4V to shutdown the device.</td>
</tr>
<tr>
<td>VFB</td>
<td>4</td>
<td>Feedback Pin. Receives the feedback voltage from an external resistive divider across the output.</td>
</tr>
<tr>
<td>SW</td>
<td>5</td>
<td>Switch Pin. Must be connected to Inductor. This pin connects to the drains of the internal main and synchronous power MOSFET switches.</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION(1)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Temperature Range</th>
<th>Package</th>
<th>Packing Method</th>
<th>Lead Free(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XRP6658ISTR-F</td>
<td>-40°C ≤ Tj ≤ +125°C</td>
<td>5-Pin SOT23</td>
<td>Tape & Reel</td>
<td>Yes</td>
</tr>
<tr>
<td>XRP6658EVB</td>
<td></td>
<td>XRP6658 Evaluation Board</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Refer to www.maxlinear.com/XRP6658 for most up-to-date Ordering Information.

Note that the XRP6658 series is packaged in Tape and Reel with a reverse part orientation as per the following diagram:
TYPICAL PERFORMANCE CHARACTERISTICS

All data taken at $V_{IN} = 3.6\,\text{V}$, $T_J = T_A = 25^\circ\text{C}$, unless otherwise specified - Schematic and BOM from Application Information section of this datasheet.

Fig. 4: Efficiency vs. Output Current, $V_{IN} = 5\,\text{V}$

Fig. 5: Efficiency vs. Output Current, $V_{IN} = 3.3\,\text{V}$

Fig. 6: Feedback Voltage vs. Temperature

Fig. 7: Oscillator Frequency vs Temperature

Fig. 8: $R_{DS(\text{ON})}$ vs Temperature

Fig. 9: $R_{DS(\text{ON})}$ vs Input Voltage
Fig. 10: Line Regulation

Fig. 11: Load Regulation

Fig. 12: Quiescent Current vs Temperature

Fig. 13: Quiescent Current vs Input Voltage

Fig. 14: Shutdown Current vs Temperature

Fig. 15: Shutdown Current vs Input Voltage
Fig. 16: Enable From EN Pin (VIN=5V, IOUT=1A)

Fig. 17: Disable From EN Pin (VIN=5V, IOUT=1A)

Fig. 18: Power-On From VIN Pin (VIN=5V, IOUT=1A)

Fig. 19: Power-Off From VIN Pin (VIN=5V, IOUT=1A)

Fig. 20: Load Step Response
VOUT=1.2V, IOUT From 100mA to 500mA

Fig. 21: Load Step Response
VOUT=1.2V, IOUT From 100mA to 1A
THEORY OF OPERATION

The typical application circuit of adjustable version is shown in figure 22.

![Diagram of application circuit]

Fig. 22: Typical Application

INDUCTOR SELECTION

Inductor ripple current and saturation current rating are two factors to be considered when selecting the inductor value. A low DCR inductor is preferred.

The inductor value L can be calculated from the following equation:

$$L = \left(V_{IN} - V_{OUT} \right) \times \left(\frac{V_{OUT}}{V_{IN}} \right) \times \frac{1}{f} \times \frac{1}{\Delta I_L}$$

C\text{IN} AND C\text{OUT} SELECTION

A low ESR input capacitor can minimize the input voltage ripple. Voltage rating of the capacitor should be at least 50% higher than the input voltage. The RMS current of the input capacitor is required to be larger than the I_{RMS} calculated by:

$$I_{RMS} \approx I_{OMAX} \frac{\sqrt{V_{OUT}(V_{IN}-V_{OUT})}}{V_{IN}}$$

The ESR value is an important parameter to consider when selecting an output capacitor C_{OUT}. The output ripple V_{OUT} is determined by:

$$\Delta V_{OUT} \approx \Delta I_L \left(ESR + \frac{1}{8 \times f \times C_{OUT}} \right)$$

The output capacitor's value can be optimized for very low output voltage ripple and small circuit size. Voltage rating of the capacitor should be at least 50% higher than the output voltage. Higher values, lower cost ceramic capacitors are now available in smaller sizes. These ceramic capacitors have high ripple currents, high voltage ratings and low ESR that make them ideal for switching regulator applications.

It is recommended to use X5R or X7R ceramic capacitors as they have the best temperature and voltage characteristics.

OUTPUT VOLTAGE SELECTION

The output voltage is adjustable via the external resistor network $R1$ and $R2$ as per the following formula:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R2}{R1} \right)$$

where, V_{REF} is the reference voltage at 0.6V.

The feedback resistors must be chosen such that power dissipation of the network is minimal. $R1$ must be selected within the range of $80k\Omega \leq R1 \leq 120k\Omega$. $R2$ is selected based on the above equation.

THERMAL CONSIDERATIONS

Although thermal shutdown is built-in in XRP6658 to protect the device from thermal damage, the total power dissipation that XRP6658 can sustain is based on the package thermal capability. The formula to ensure safe operation is shown in Note 1. To avoid XRP6658 from exceeding the maximum junction temperature, some thermal analysis is required.

GUIDELINES FOR PCB LAYOUT

To ensure proper operation of the XRP6658, please note the following PCB layout guidelines:

1. The GND, SW and VIN traces should be kept short, direct and wide.
2. VFB pin must be connected directly to the feedback resistors. Resistive divider $R1/R2$ must be connected in parallel to the output capacitor C_{OUT}.
3. The input capacitor C_{IN} must be as close as possible to pin VIN.
4. Keep SW node away from the sensitive VFB node since SW signal experiences high frequency voltage swings.
TYPICAL APPLICATIONS

Fig. 23: 3.3V/5.5V to 3.3V Conversion

Fig. 24: 2.5V/5.5V to 1.2V Conversion
PACKAGE SPECIFICATION

5-Pin SOT23

Dimensions in mm (Control Unit) | Dimensions in Inch (Reference Unit)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>—</td>
<td>0.15</td>
<td>—</td>
<td>—</td>
<td>0.057</td>
<td>—</td>
</tr>
<tr>
<td>A1</td>
<td>0.00</td>
<td>0.15</td>
<td>0.006</td>
<td>—</td>
<td>0.006</td>
<td>—</td>
</tr>
<tr>
<td>A2</td>
<td>0.00</td>
<td>0.15</td>
<td>0.036</td>
<td>—</td>
<td>0.051</td>
<td>—</td>
</tr>
<tr>
<td>b</td>
<td>0.30</td>
<td>0.50</td>
<td>0.012</td>
<td>—</td>
<td>0.009</td>
<td>—</td>
</tr>
<tr>
<td>e</td>
<td>0.06</td>
<td>0.22</td>
<td>0.003</td>
<td>—</td>
<td>0.009</td>
<td>—</td>
</tr>
<tr>
<td>d</td>
<td>2.90</td>
<td>0.115</td>
<td>—</td>
<td>—</td>
<td>0.115</td>
<td>—</td>
</tr>
</tbody>
</table>

Note:
- **A** is the maximum package thickness.
- **b** is the maximum package thickness.
- **e** is the maximum package width.

Drawing No.: P02-00630025
Revision: B
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0</td>
<td>09/16/2010</td>
<td>Initial release of datasheet</td>
</tr>
<tr>
<td>1.1.0</td>
<td>09/30/2010</td>
<td>Corrected pin-out on schematics Figures 1, 23 and 24.</td>
</tr>
<tr>
<td>1.2.0</td>
<td>11/15/2010</td>
<td>Corrected ΔV_{OUT} equation: changed V_{OUT} to C_{OUT}. Updated ‘Output Voltage selection’ section.</td>
</tr>
<tr>
<td>1.3.0</td>
<td>01/14/2011</td>
<td>Added specific test conditions and data in Electrical Specification Table for output voltage accuracy, reference voltage line regulation and output voltage line regulation for operations below 3V.</td>
</tr>
<tr>
<td>1.4.0</td>
<td>07/19/2011</td>
<td>Corrected typographical errors on package specification table parameters “b” and “e”.</td>
</tr>
<tr>
<td>1.5.0</td>
<td>01/14/2011</td>
<td>Added a range for the selection of lower feedback resistor.</td>
</tr>
<tr>
<td>1.6.0</td>
<td>01/13/2014</td>
<td>Added “Junction Temperature Range T_J…-$40°C$ to $125°C$” to operating ratings; In “Ordering Information” changed the temperature range to “$-40°C$≤T_J≤$+125°C$”.</td>
</tr>
<tr>
<td>2.0.0</td>
<td>01/07/2020</td>
<td>Updated to MaxLinear logo. Updated Ordering Information. Updated I_Q, $R_{DS(ON)}$, feedback current and UVLO. Updated graphs. Updated ESD rating.</td>
</tr>
</tbody>
</table>
CORPORATE HEADQUARTERS:

5966 La Place Court
Suite 100
Carlsbad, CA 92008
Tel.: +1 (760) 692-0711
Fax: +1 (760) 444-8598

www.maxlinear.com

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Maxlinear, Inc. Maxlinear, Inc. Assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Maxlinear, Inc.

Maxlinear, Inc. Does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Maxlinear, Inc. Receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of Maxlinear, Inc. Is adequately protected under the circumstances.

Maxlinear, Inc. May have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Maxlinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Maxlinear, the Maxlinear logo, and any Maxlinear trademarks, MxL, Full-Spectrum Capture, FSC, G.now, AirPHY and the Maxlinear logo are all on the products sold, are all trademarks of Maxlinear, Inc. or one of Maxlinear’s subsidiaries in the U.S.A. and other countries. All rights reserved. Other company trademarks and product names appearing herein are the property of their respective owners.

© 2010 - 2020 Maxlinear, Inc. All rights reserved.